
Symbian OS does not support the Standard Template Library (STL) for a number of reasons—primarily because of STL's large footprint. However, Symbian
OS does provide a number of templated collection classes, so that developers do not need to write their own arrays, linked lists and so on.

There are many classes available. CArray and RArray are essentially dynamic arrays. Then we have lists, TSglQue single linked, TDblQue double linked,
CCirBuf a circular buffer. And a balanced tree implementation, TBtree.

What types of collection are available?
RArray classes: - use flat storage only, - support sorting and searching using a comparator function and can ensure uniqueness, - provide specializations
for common types, for instance, integers.

CArray classes: - provide a choice of either flat or segmented storage, - support sorting and searching using a key specification and can ensure
uniqueness, - provide several variants, for instance, fixed or variable size elements, packed data - are generally slower and can be less easy to use than the
RArray classes.

Descriptor arrays: - provide a choice of either flat or segmented storage - can contain 8-bit or 16-bit descriptors - support sorting and searching and can
ensure uniqueness - provide variants that can store any type of descriptor or can hold pointers to the data.

Linked lists: - support iterators for scanning through the list - are available as singly and doubly linked lists; the link object must be a member of the
linked class.

TFixedArray: - used when the number of elements is fixed and known at compile time - should be used instead of traditional C++ arrays because they
provide bounds checking.

TArray: - used for representing any array data in a generic way.

RArray and RPointerArray Types
Since RArrays are easier to use than CArrays, we will discuss them first. An RArray is a simple array of fixed-length objects, while an RPointerArray is an
array of pointers to objects. It is worth noting from the outset that RArrays impose a limitation of 640 bytes on the size of their elements. Usually this is not
an issue, since most objects are likely to be smaller than this limit, and RPointerArray can be used to point to arbitrarily large objects anyway. Generally,
therefore, owing to their greater efficiency, flexibility and ease of use, RArrays are recommended over CArray types.

RArrays and RPointerArrays tend to be constructed on the stack or simply nested directly into other heap-based objects.They are resource based classes
hence you have to close before leaving. Using the cleanup stack remember the CleanupClosePushL() instead of PushL().

Using RArray

struct Networkdata
{
 TBuf<10> LAC;
 TBuf<15> CELLID;
};

// RArray of type Networkdata.

RArray<data> DesArray;

// Filling data into structure

struct Networkdata db;
db.LAC.Copy(_L("1121"));
db.CELLID.Copy(_L("152"));

// Appending Networkdata in DesArray.

DesArray.Append(db);

Once an array is finished with, it must be reset before being allowed to go out of scope (or before the object in which it is nested is deleted). Both RArray
and RPointerArray implement a Reset() method that frees all of the memory allocated for storing the elements.

In case of RPointerArray you could use method ResetAndDestroy() to free memory, allocated by the elements.

DesArray.Reset();

Collection classes

Page 1 of 3
Printed on 2013-12-10

http://developer.nokia.com/Community/Wiki/Collection_classes (C) Copyright Nokia 2013. All rights reserved.

http://developer.nokia.com/Community/Wiki/Collection_classes

CArray Types
All of the CArray types use buffers to store their data. Buffers (derived from CBufBase) provide access to regions of memory and are in some ways similar to
descriptors in that respect. However, while descriptors are intended to store data objects whose maximum size is not expected to alter much, buffers are
expected to grow and shrink dynamically during the lifetime of the program. There are two buffer types 1) flat and 2) segmented and these two types
give rise to two basic subtypes of CArray.

Flat buffers store their entire data within a single heap cell. Once full, any subsequent append operation requires a new heap cell to be allocated that is
large enough to contain the original and new data. Once the allocation has completed, all of the old data is copied to the new cell, and the old cell is
released back to the global heap.

Segmented buffers store their data in a doubly-linked list of smaller segments, each of which is a separate heap cell of fixed size. Once all of the segments
have been allocated, a new segment will be allocated and added into the list, with the old data remaining in place, and without the need for copying.
While this can reduce the memory thrashing associated with frequent reallocation, accessing data is less efficient than flat buffers, since the list of
segments must be traversed, plus more memory is consumed by the need to store linked list pointers. It can also lead to memory fragmentation.

Why Use RArray Instead of CArrayX?
The original CArrayX classes use CBufBase, which allows a varied dynamic memory layout for the array using either flat or segmented array buffers.
However, CBufBase works with byte buffers and requires a TPtr8 object to be constructed for every array access. This results in a performance
overhead, even for a simple flat array containing fixedlength elements. Furthermore, for every method which accesses the array, there are a minimum
of two assertions to check the parameters, even in release builds

Page 2 of 3
Printed on 2013-12-10

http://developer.nokia.com/Community/Wiki/Collection_classes (C) Copyright Nokia 2013. All rights reserved.

Page 3 of 3
Printed on 2013-12-10

http://developer.nokia.com/Community/Wiki/Collection_classes (C) Copyright Nokia 2013. All rights reserved.

	Collection classes
	What types of collection are available?
	RArray and RPointerArray Types
	Using RArray
	CArray Types
	Why Use RArray Instead of CArrayX?

