
Archived:Combining Qt Animation and State Machine
Frameworks

Archived: This article is archived because it is not considered relevant for third-party developers creating commercial

solutions today. If you think this article is still relevant, let us know by adding the template
{{ReviewForRemovalFromArchive|user=~~~~|write your reason here}}.

Qt Quick should be used for all UI development on mobile devices. The approach described in this article (using C++ for the Qt
app UI) is deprecated.

This article demonstrates how to combine Qt's Animation Framework and State Machine Framework to animate standard widgets.

Firstly it shows how to implement and application’s logic using a state machine. Then it demonstrates how to use the animation
and state machine frameworks together, animating standard widgets rather than graphics items.

Animation Framework Concepts
Qt’s animation framework is quite interesting and the concepts are easy to understand. The framework is based on QObject and
Qt’s property system. The simplest approach is to create a QPropertyAnimation for each property of each QObject we want to
animate, and to give the property animation a duration, an initial value, and a final value.

In this example we give a duration of 5000 milliseconds and initial and final geometry specified as QRect . When the animation
starts the object is immediately set to the initial geometry and then its geometry will be changed over a 5 second period to reach
the final geometry. So if the initial width is 50 pixels and the final width is 360 pixels then the width would be 112 pixels after 1
second, 174 pixels after 2 seconds, 236 pixels after 3 seconds, 298 pixels after 4 seconds and finally 360 pixels after 5 seconds.
In this case the increment is 62 pixels per second - calculated from the difference between the final and initial widths divided by
the duration ie (360- 50)/5 = 62.

Qt uses a much finer time granularity than seconds, so the actual change of width might be from 50 pixels to 52 pixels to 54 pixels
and so on. We will also use the QEasingCurve class which offers over forty different interpolation graphs.

State Machine Framework Concepts
Using Qt’s state machine framework we can define the states of an application and the transitions and triggers between them.
Like the animation framework, the state machine framework is heavily dependent on QObject and Qt’s property system.

To set up a state machine we start by creating a QStateMachine . Then we create the states we need (QState or
QFinalState). For easch state we assign property values (QObject, property, value), these are the values that the state machine
will change the properties to when in the state.

Once the states have been set up then we create the transitions which define how the state machine changes from one state to
another. When ever there is a change in the state it emits an exited() signal to the state it left behind, it emits entered() signal to

the state it enters and emits a finished () signal if the state is completed. Now when everything is set up we tell the state

machine which state to use as its initial state and then call QStateMachine::start() to start the machine.

The state machine offers a lot more functionality - we've only used the very basic functionality here.

Basic Idea
The example is a state machine with three states, s1, s2 and s3, where s1 is the initial state and s3 is the final state. The state
machine has a single QPushButton which has a different position in each state. When the button is clicked, the state machine
moves to the next state and animates the button to its next position.

The three screenshots below were recorded while changing the states.

Page 1 of 4
Printed on 2014-04-16

http://developer.nokia.com/community/wiki/Archived:Combining_Qt_Animation_and_State_Machine_Frameworks (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/Archived:Combining_Qt_Animation_and_State_Machine_Frameworks
http://developer.nokia.com/community/wiki/Template:Archived
http://developer.nokia.com/community/wiki/Category:Archived
http://developer.nokia.com/community/wiki/Template:ReviewForRemovalFromArchive
http://developer.nokia.com/community/wiki/Category:Qt_Quick
http://doc.qt.nokia.com/4.7/qobject.html
http://doc.qt.nokia.com/4.7/qpropertyanimation.html
http://doc.qt.nokia.com/4.7/qobject.html
http://doc.qt.nokia.com/4.7/qrect.html
http://doc.qt.nokia.com/4.7/qeasingcurve.html
http://doc.qt.nokia.com/4.7/qobject.html
http://doc.qt.nokia.com/4.7/qstatemachine.html
http://doc.qt.nokia.com/4.7/qstate.html
http://doc.qt.nokia.com/4.7/qfinalstate.html
http://doc.qt.nokia.com/4.7/qpushbutton.html

Class Definition

#ifndef STATEMACHINEQT_H

#define STATEMACHINEQT_H

#include <QMainWindow>

#include "QPushButton"

#include "QVBoxLayout"

#include "QStateMachine"

#include <QPropertyAnimation>

#include "QEventTransition"

#include "QMessageBox"

namespace Ui {

 class StateMachineQt;

}

class StateMachineQt : public QMainWindow

{

 Q_OBJECT

public:

 explicit StateMachineQt(QWidget *parent = 0);

 ~StateMachineQt();

private:

 Ui::StateMachineQt *ui;

public:

 QPushButton *iButton;

 QStateMachine *machine;

 QPropertyAnimation *animation;

public slots:

 void animate1();

 void animate2();

 void animate3();

};

#endif // STATEMACHINEQT_H

The slots animate1/2/3() are used to animate the button from one position to another.

Page 2 of 4
Printed on 2014-04-16

http://developer.nokia.com/community/wiki/Archived:Combining_Qt_Animation_and_State_Machine_Frameworks (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/File:StateMachine1.png
http://developer.nokia.com/community/wiki/File:StateMachine2.png
http://developer.nokia.com/community/wiki/File:StateMachine3.png
http://doc.trolltech.com/latest/qmainwindow.html
http://doc.trolltech.com/latest/qwidget.html
http://doc.trolltech.com/latest/qpushbutton.html

The QStateMachine class provides a hierarchical finite state machine. It is part of The State Machine Framework . The
QPropertyAnimation class animates Qt properties. QPropertyAnimation interpolates over Qt properties. As property values are
stored in QVariants , the class inherits QVariantAnimation , and supports animation of the same variant types as its super class.

Class Implementation
First we create a button of size 50x50.

iButton = new QPushButton(this);

iButton->setSizePolicy(QSizePolicy::Expanding, QSizePolicy::Expanding);

iButton->setFixedSize(50,50);

iButton->show();

Then we create the state machine and states:

machine = new QStateMachine(this);

QState *s1 = new QState();

s1->assignProperty(iButton, "text", "S1");

QState *s2 = new QState();

s2->assignProperty(iButton, "text", "S2");

QState *s3 = new QState();

s3->assignProperty(iButton, "text", "S3");

The QState::assignProperty() function is used to have a state set a property of a QObject when the state is entered.

Then we create the transitions by using the QState::addTransition() function.

s1->addTransition(iButton, SIGNAL(clicked()), s2);

s2->addTransition(iButton, SIGNAL(clicked()), s3);

s3->addTransition(iButton, SIGNAL(clicked()), s1);

Next, we add the states to the machine and set the machine's initial state:

machine->addState(s1);

machine->addState(s2);

machine->addState(s3);

machine->setInitialState(s1);

Finally, we start the state machine:

machine->start();

The QState::entered() signal is emitted when the state is entered:

QObject::connect(s1, SIGNAL(entered()), this, SLOT(animate1()));

QObject::connect(s2, SIGNAL(entered()), this, SLOT(animate2()));

QObject::connect(s3, SIGNAL(entered()), this, SLOT(animate3()));

In the following snippet, the widget animation() slot will be called when states are entered.

animation = new QPropertyAnimation(iButton, "geometry");

Page 3 of 4
Printed on 2014-04-16

http://developer.nokia.com/community/wiki/Archived:Combining_Qt_Animation_and_State_Machine_Frameworks (C) Copyright Nokia 2014. All rights reserved.

http://doc.qt.nokia.com/4.7/qstatemachine.html
http://doc.qt.nokia.com/4.7/statemachine-api.html
http://doc.qt.nokia.com/4.7/qpropertyanimation.html
http://doc.qt.nokia.com/4.7/qpropertyanimation.html
http://doc.qt.nokia.com/4.7/qvariant.html#qVariantSetValue
http://doc.qt.nokia.com/4.7/qvariantanimation.html
http://doc.trolltech.com/latest/qpushbutton.html
http://doc.trolltech.com/latest/qsizepolicy.html
http://doc.trolltech.com/latest/qsizepolicy.html
http://doc.qt.nokia.com/4.7/qobject.html
http://doc.trolltech.com/latest/qobject.html
http://doc.trolltech.com/latest/qobject.html
http://doc.trolltech.com/latest/qobject.html

animation->setDuration(5000);

animation->setStartValue(QRect(0,0, iButton->width(),iButton-> height()));

animation->setEndValue(QRect(310,135, iButton->width(),iButton->height()));

animation->setEasingCurve(QEasingCurve::OutBounce);

animation->start();

The button is animated from (0,0) position to (310,135) position while entering to state 1 (similar animations happen when
entering the other states). We have also added an easing effect with setEasingCurve() function which makes the animation

"bounce" before it settles. Finally start() is called to start the animation.

Source Code
The full source code for this article is available here: File:StateMachineQt.zip

Related Articles
How to use QStateMachine in Qt

Archived:Using QStateMachine and QState

Page 4 of 4
Printed on 2014-04-16

http://developer.nokia.com/community/wiki/Archived:Combining_Qt_Animation_and_State_Machine_Frameworks (C) Copyright Nokia 2014. All rights reserved.

http://doc.trolltech.com/latest/qrect.html
http://doc.trolltech.com/latest/qrect.html
http://developer.nokia.com/community/wiki/File:StateMachineQt.zip
http://developer.nokia.com/community/wiki/How_to_use_QStateMachine_in_Qt
http://developer.nokia.com/community/wiki/Archived:Using_QStateMachine_and_QState

	Archived:Combining Qt Animation and State Machine Frameworks
	Animation Framework Concepts
	State Machine Framework Concepts
	Basic Idea
	Class Definition
	Class Implementation
	Source Code
	Related Articles

