
Content Handling with Maps API for Java ME

13 Oct
2013

This article explains how to add different types of content to the Map when using the HERE Maps API for Java ME .
Removing content and other content functionality is also dealt with in this article.

Introduction

The HERE Maps API for Java ME makes it possible to easily embed the HERE Maps service into Java ME applications.

MapMarkers have already been discussed in the Adding Markers to the Map with Maps API for Java ME article, thus this article will

concentrate on other types of content that may be added to the map.

Adding content to the map
In addition to MapMarkers the following content types have class definition included with the HERE Maps API for Java ME:

Polygon,

Polyline,

Circle, and

Rectangle

Polylines can be constructed by using the MapFactory, the constructor takes only one argument, which is an array of points for the

Polyline. after construction you can use the methods provide by the MapPolyline class to modify it, for example you can change

the color of the line with setColor() method.

GeoCoordinate[] polylinCoord = new GeoCoordinate[4];

polylinCoord[0] = new GeoCoordinate(60.27, 24.81, 0);

polylinCoord[1] = new GeoCoordinate(60.35, 24.70, 0);

polylinCoord[2] = new GeoCoordinate(60.19, 24.57, 0);

polylinCoord[3] = new GeoCoordinate(60.27, 24.81, 0);

MapPolyline polyline = mapCanvas.getMapFactory().createMapPolyline(polylinCoord);

polyline.setColor(0xFF43A5FF);

mapCanvas.getMapDisplay().addMapObject(polyline)

In a similar manner to Polylines, Polygons are constructed via the MapFactory, and the constructor also takes the array of points:

GeoCoordinate[] polygonCoord = new GeoCoordinate[3];

polygonCoord[0] = new GeoCoordinate(60.22, 24.81, 0);

Page 1 of 3
Printed on 2014-03-11

http://developer.nokia.com/community/wiki/Content_Handling_with_Maps_API_for_Java_ME (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/Content_Handling_with_Maps_API_for_Java_ME
http://developer.nokia.com/community/wiki/Template:FeaturedArticle
http://www.developer.nokia.com/Resources/Library/HERE_Maps_Java_ME/#!index.html
http://developer.nokia.com/community/wiki/File:MapContent.png
http://www.developer.nokia.com/Resources/Library/HERE_Maps_Java_ME/#!index.html
http://developer.nokia.com/community/wiki/Adding_Markers_to_the_Map_with_Maps_API_for_Java_ME

polygonCoord[1] = new GeoCoordinate(60.30, 24.70, 0);

polygonCoord[2] = new GeoCoordinate(60.14, 24.57, 0);

MapPolygon polygon = mapCanvas.getMapFactory().createMapPolygon(polygonCoord);

polygon.setColor(0xAA43A51B);

mapCanvas.getMapDisplay().addMapObject(polygon);

The Circle and rectangle are basically special polygons helper classes. For the Circle the constructor takes two arguments,

which are the radius and center. And for the Rectangle the only argument taken is bounding box for the rectangle, which is

basically area defined by two points, left top point and the bottom right point.

MapCircle myCircle = mapCanvas.getMapFactory().createMapCircle(5000.0,new

GeoCoordinate(60.30, 24.70,0));

// ...

GeoBoundingBox rectnaglebox = new GeoBoundingBox(new GeoCoordinate(60.35, 24.60,0), new

GeoCoordinate(60.25, 24.80,0));

MapRectangle rectnagle = mapCanvas.getMapFactory().createMapRectangle(rectnaglebox);

Z-ordering content
The Z-ordering content is handled simply by using the setzIndex() method for each content that needs to be ordered. Giving a

lower value in setzIndex() will make the content to be drawn under the content that has higher values. For example if you want

myCircle to be drawn on top of the rectangle, you can do it with following code:

int markerZ = 1;

int polyZ = 0;

myCircle.setzIndex(markerZ);

rectangle.setzIndex(polyZ);

Hiding content without deleting them
Each content item can be hidden by calling the setVisible() method with a Boolean argument set to false :

boolean vissible = !rectnagle.isVisible();

rectnagle.setVisible(vissible);

Removing content
Each content added to the Map display with the addMapObject() method can be also removed by using the removeMapObject()

method.

mapCanvas.getMapDisplay().addMapObject(myCircle);

Thus, if for example, myCircle is added with the code above, it can be later on removed from the Map by using the code shown

below.

mapCanvas.getMapDisplay().removeMapObject(myCircle);

Resources

Page 2 of 3
Printed on 2014-03-11

http://developer.nokia.com/community/wiki/Content_Handling_with_Maps_API_for_Java_ME (C) Copyright Nokia 2014. All rights reserved.

Full source code illustrating usage for map content types discussed in this article is available at: File:Java MapContent.zip

Summary
The HERE Maps API for Java ME offers rich functionality which facilitates the integration of all the main HERE Maps features
into a Java ME application, with just a few lines of code.

Page 3 of 3
Printed on 2014-03-11

http://developer.nokia.com/community/wiki/Content_Handling_with_Maps_API_for_Java_ME (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/File:Java_MapContent.zip
http://www.developer.nokia.com/Resources/Library/HERE_Maps_Java_ME/#!index.html

	Content Handling with Maps API for Java ME
	Introduction
	Adding content to the map
	Z-ordering content
	Hiding content without deleting them
	Removing content
	Resources
	Summary

