
Getting started with the Camera APIs for native code
This tutorial explains how to use the native camera interfaces in the Windows Phone 8 SDK.

Introduction
The camera APIs available on Windows Phone 8 provides both high-, mid- and low-level scenarios. High-level use can be in the
form of using an AudioVideoCaptureDevice instance to record video to a file, or taking a sequence of photos using

PhotoCaptureDevice. Mid-level usage can be in the form of using the ability to read out the preview buffer from an active

AudioVideoCaptureDevice, using the method AudioVideoCaptureDevice.GetPreviewBufferArgb or one of the alternatives. Low-

level access requires the use of the native interfaces introduced in Windows Phone 8, and in this article I will show how to
achieve that.

Developing using the Camera APIs for native code
The native interfaces, as described on Camera APIs for native code (Windows Phone 8) , are all that is needed to implement
native access to the advanced camera APIs. Some of the interfaces are implemented by Windows Phone 8, and some of the
interfaces must be implemented by the application.

The interfaces implemented by the OS are ICameraCaptureDeviceNative and IAudioVideoCaptureDeviceNative, and the

application-implemented interfaces are ICameraCapturePreviewSink and ICameraCaptureSampleSink.

To retrieve an instance of one of the OS implemented interfaces, the procedure starts with either an instance of
AudioVideoCaptureDevice or PhotoCaptureDevice.

An example of how this is done, can be seen in the following example:

AudioVideoCaptureDevice captureDevice;

// ...

// Retrieve the native ICameraCaptureDeviceNative interface from the managed video

capture device

ICameraCaptureDeviceNative *iCameraCaptureDeviceNative = NULL;

HRESULT hr =

reinterpret_cast<IUnknown*>(captureDevice)->QueryInterface(__uuidof(ICameraCaptureDeviceNative),

(void**) &iCameraCaptureDeviceNative);

The ICameraCaptureDeviceNative interface is of interest to both photo- and audio/video-applications, as it provides access to a

number of interesting methods. The first method of interest is SetPreviewSink. This method takes a pointer to an instance of the

ICameraCapturePreviewSink interface. This means that the application will receive the preview frames and can process them in

any way wanted. Related to this method is SetPreviewFormat, which sets the format of the preview-frames delivered (i.e. ARGB,

NV12, etc.). The other two methods in this interface, SetDevice (used to set the DirectX 11 device and context) and

GetPreviewBufferTexture (used to fill a DirectX 11 texture with the preview frames). Please note that the DirectX-related part of

the interface is not demonstrated in this example.

The IAudioVideoCaptureDeviceNative-interface provides access to methods geared towards video- and audio-applications. The

method SetAudioSampleSink sets the sink to receive audio samples, and the method SetVideoSampleSink sets the sink to receive

video samples. Please note that both methods take a pointer to an instance of the ICameraCaptureSampleSink interface and that

the ICameraCaptureSampleSink interface itself does not contain any way to identify whether the sample received is audio or video,

so therefore I would recommend to implement it as two seperate sinks, one to handle audio and the other to handle video
samples.

Limitations on capturing and preview dimensions
The following table shows which combinations of capture and preview resolutions that works in practice (this has been tested on
a Lumia 920 device).

Type Aspect ratio Capturing resolution Preview resolution

Photo 4:3 3264x2448, 2592x1936, 2048x1536, 640x480 1024x768, 640x480

Page 1 of 3
Printed on 2014-03-11

http://developer.nokia.com/community/wiki/Getting_started_with_the_Camera_APIs_for_native_code (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/Getting_started_with_the_Camera_APIs_for_native_code
http://developer.nokia.com/community/wiki/Portal:Windows_Phone_Multimedia
http://developer.nokia.com/community/wiki/Category:DirectX
http://developer.nokia.com/community/wiki/Category:Windows_Phone_8
http://developer.nokia.com/community/wiki/Category:Getting_Started_on_Windows_Phone
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj571202

Photo 16:9 3552x2000, 2592x1456 1280x720, 800x448

Video 4:3 640x480, 320x240, 160x120 1024x768, 640x480

Video 16:9 1920x1080, 1280x720 1280x720, 800x448

Implementing the interfaces
To implement the interfaces, the following files must be included

#include <implements.h>

#include <Windows.Phone.Media.Capture.h>

#include <Windows.Phone.Media.Capture.Native.h> // This file contains the interface

definitions for the native interfaces

class CameraCapturePreviewSink :

 public Microsoft::WRL::RuntimeClass<

 Microsoft::WRL::RuntimeClassFlags<Microsoft::WRL::RuntimeClassType::ClassicCom>,

 ICameraCapturePreviewSink>

{

 IFACEMETHODIMP_(void) OnFrameAvailable(

 DXGI_FORMAT format,

 UINT width,

 UINT height,

 BYTE* pixels);

};

class CameraCaptureSampleSink :

 public Microsoft::WRL::RuntimeClass<

 Microsoft::WRL::RuntimeClassFlags<Microsoft::WRL::RuntimeClassType::ClassicCom>,

 ICameraCaptureSampleSink>

{

 IFACEMETHODIMP_(void) OnSampleAvailable(

 ULONGLONG hnsPresentationTime,

 ULONGLONG hnsSampleDuration,

 DWORD cbSample,

 BYTE* pSample);

};

Use cases
Native access to the camera and audio data is highly sought after in a number of fields

Computer vision (as the algorithms are usually heavy on CPU and memory bandwidth)

VoIP (as you can get access to the video and audio the moment they have been either sampled or encoded by hardware/OS)

My own idea for this project was as starting point for use in a computer vision project. This would include use of the SURF
algorithm, which is an obvious candidate for implementing in native code, as both the summed area table generation and further
parts of the algorithm can benefit from SIMD processing. Furthermore, access to the camera data without the overhead of the
managed runtime, would benefit the speed of the implementation greatly, as there would be no unnecessary transfers between
native and managed code of large amounts of data and the ability to optimize using NEON instructions where applicable.

Sample code
Please see this attached project for a full implementation of the interfaces mentioned in this article
File:NativeCameraInterface.zip.

Page 2 of 3
Printed on 2014-03-11

http://developer.nokia.com/community/wiki/Getting_started_with_the_Camera_APIs_for_native_code (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/File:NativeCameraInterface.zip

Page 3 of 3
Printed on 2014-03-11

http://developer.nokia.com/community/wiki/Getting_started_with_the_Camera_APIs_for_native_code (C) Copyright Nokia 2014. All rights reserved.

	Getting started with the Camera APIs for native code
	Introduction
	Developing using the Camera APIs for native code
	Limitations on capturing and preview dimensions
	Implementing the interfaces
	Use cases
	Sample code

