
HTTP basic access authentication in Java ME
This article explains how to access HTTP resources protected by a basic access authentication in Java ME.

Introduction
Basic access authentication is the simplest form of authorization available for HTTP resources.

Java app accessing
resources via HTTP basic
access authentication

The typical process involved when accessing a HTTP resource protected by this authentication method is the following:

1. the client sends an unauthenticated request to the HTTP server

2. the HTTP server replies with a 401 status code, meaning that the client is unauthorized to access the resource, and adding
an HTTP header named WWW-Authenticate. This header specifies the authentication method and the realm the user

should authenticate for.

3. the client reads the WWW-Authenticate header, and sends a new authenticated request by adding the Authorization HTTP

header. This header contains the user credentials formatted as <USERNAME>:<PASSWORD> and Base64 encoded.

Note: If the authentication method and realm used by the HTTP server is already known, the client can also skip the first two

steps, and send immediately an authenticated request as specified by step 3.

Implementation
The Java app sends a first request to the HTTP server, without any authentication credential.

If the server replies with a 401 HTTP status code, identified in Java by the HttpConnection.HTTP_UNAUTHORIZED constant, the Java

app checks the WWW-Authenticate HTTP header, verifying if it starts with the Basic text: that string identifies the basic access
authentication method.

HttpConnection hc = (HttpConnection) Connector.open(url);

int responseCode = hc.getResponseCode();

if(responseCode == HttpConnection.HTTP_UNAUTHORIZED)

{

 String wwwAuthHeader = (String)hc.getHeaderField("WWW-Authenticate");

 if(wwwAuthHeader != null && wwwAuthHeader.indexOf("Basic ") == 0)

 {

 // HTTP basic access authentication must be used to access this resource

 }

}

Page 1 of 3
Printed on 2014-03-08

http://developer.nokia.com/community/wiki/HTTP_basic_access_authentication_in_Java_ME (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/HTTP_basic_access_authentication_in_Java_ME
http://en.wikipedia.org/wiki/Basic_access_authentication
http://developer.nokia.com/community/wiki/File:Wiki_asha_httpbasicauth.png
http://developer.nokia.com/community/wiki/File:Wiki_asha_httpbasicauth.png
http://developer.nokia.com/community/wiki/Template:Note
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky

When the Java app identifies the basic access authentication method, it can also check the realm it should authenticate for, by
accessing the remaining portion of the WWW-Authenticate header.

Once the Java app is ready, it must send a second HTTP request specifying the Authorization header, containing the base64
encoded version of the user credentials, formatted as <USERNAME>:<PASSWORD>. Since Java ME has no inbuilt
implementation of the Base64 encoding algorithm, this must be implemented with custom code. A possible implementation of the
algorithm is available here , and is reported below for ease of use:

 String base64Encode(String s) {

 // the result/encoded string, the padding string, and the pad count

 String r = "", p = "";

 int c = s.length() % 3;

 // add a right zero pad to make this string a multiple of 3 characters

 if (c > 0) {

 for (; c < 3; c++) {

 p += "=";

 s += "\0";

 }

 }

 // increment over the length of the string, three characters at a time

 for (c = 0; c < s.length(); c += 3) {

 // we add newlines after every 76 output characters, according to

 // the MIME specs

 if (c > 0 && (c / 3 * 4) % 76 == 0)

 r += "\r\n";

 // these three 8-bit (ASCII) characters become one 24-bit number

 int n = (s.charAt(c) << 16) + (s.charAt(c + 1) << 8)

 + (s.charAt(c + 2));

 // this 24-bit number gets separated into four 6-bit numbers

 int n1 = (n >> 18) & 63, n2 = (n >> 12) & 63, n3 = (n >> 6) & 63, n4 = n &

63;

 // those four 6-bit numbers are used as indices into the base64

 // character list

 r += "" + base64chars.charAt(n1) + base64chars.charAt(n2)

 + base64chars.charAt(n3) + base64chars.charAt(n4);

 }

 return r.substring(0, r.length() - p.length()) + p;

 }

By using the above method, the Java app can properly encode the user credentials, and send a second HTTP request as follows:

String authorizationHeader= "Basic " + base64Encode(username + ":" + password);

HttpConnection hc = (HttpConnection) Connector.open(url);

hc.setRequestProperty("Authorization", authorizationHeader);

responseCode = hc.getResponseCode();

Page 2 of 3
Printed on 2014-03-08

http://developer.nokia.com/community/wiki/HTTP_basic_access_authentication_in_Java_ME (C) Copyright Nokia 2014. All rights reserved.

http://en.wikibooks.org/wiki/Algorithm_Implementation/Miscellaneous/Base64
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky

In this case, if the provided user credentials are correct, the HTTP server will reply with a 200 status code.

Correct authenticated
request receives a 200
HTTP response code

Testing
Multiple test servers are available for checking the implementation of the HTTP basic access authentication. One of those is
available at the following address: http://httpbin.org/basic-auth/{USERNAME}/{PASSWORD} , where {USERNAME} and
{PASSWORD} can be customized with the desired values, and must be used as credentials for the Authorization header.

The sample Java app attached to this article uses that testing server, but data can be easily changed in order to test against other
testing or production servers.

Summary
This article illustrates a possible Java ME implementation of the basic access authentication method used for HTTP requests.

Full source code of the sample Java app illustrated in this article is available here: Media:WikiHttpBasicAuth.zip

Page 3 of 3
Printed on 2014-03-08

http://developer.nokia.com/community/wiki/HTTP_basic_access_authentication_in_Java_ME (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/File:Wiki_asha_httpbasicauth_resultok.png
http://developer.nokia.com/community/wiki/File:Wiki_asha_httpbasicauth_resultok.png
http://httpbin.org/basic-auth/{USERNAME}/{PASSWORD}
http://developer.nokia.com/community/wiki/images/b/b0/WikiHttpBasicAuth.zip?20130708070859

	HTTP basic access authentication in Java ME
	Introduction
	Implementation
	Testing
	Summary

