
HTTP digest access authentication in Java ME
This article explains how to implement HTTP digest access authentication in Java ME.

Introduction
Digest access is an authentication method used to protect HTTP resources via a negotiation-based authorization mechanism.
Compared to basic access authentication, it offers a higher level of protection, avoiding the need to send authentication data in
clear text.

Java ME app using
digest access
authentication

The typical flow of digest access authentication is:

1. the client sends an unauthorized HTTP request to the server, without specifying any credentials

2. the server replies with a 401 Unauthorized HTTP response code, specifying a WWW-Authenticate HTTP header
containing relevant information to start the authentication process

3. the client parses the WWW-Authenticate header, computes and sends back to the server a new HTTP request with a
Authorization HTTP header containing the calculated authentication data

4. if the authentication completes successfully, the server replies with a 200 HTTP response code

This article illustrates a possible implementation of digest access authentication in Java ME, building the functionality on the
networking features and APIs offered by the platform.

Implementation
The following sections describe the various steps of a the digest access authentication implementation, and specifically:

reading the WWW-Authenticate response header

parsing the values provided within the WWW-Authenticate header

computing the response MD5 hash value

generating the Authorization HTTP header

sending an authenticated request using the computed Authorization header

The unauthenticated request
The Java app sends a plain HTTP request, without specifying any credentials and, if digest access authentication is used,
receives a 401 Unauthorized response code. In this case, the app checks if the content of the WWW-Authenticate header defines
the "Digest" access authentication method, before proceeding with further steps.

HttpConnectionhc = (HttpConnection) Connector.open(url);

int responseCode = hc.getResponseCode();

if(responseCode == HttpConnection.HTTP_UNAUTHORIZED)

{

 String wwwAuthHeader = (String)hc.getHeaderField("WWW-Authenticate");

Page 1 of 5
Printed on 2014-07-26

http://developer.nokia.com/community/wiki/HTTP_digest_access_authentication_in_Java_ME (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/HTTP_digest_access_authentication_in_Java_ME
http://en.wikipedia.org/wiki/Digest_access_authentication
http://developer.nokia.com/community/wiki/HTTP_basic_access_authentication_in_Java_ME
http://developer.nokia.com/community/wiki/File:Wiki_asha_httpdigestauth.png
http://developer.nokia.com/community/wiki/File:Wiki_asha_httpdigestauth.png
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky

 if(wwwAuthHeader != null && wwwAuthHeader.indexOf("Digest ") == 0)

 {

 // digest access authentication is used

 }

}

The WWW-Authenticate header
The WWW-Authenticate HTTP header, sent by the server within replies to unauthorized HTTP requests, contains all the pieces
needed by the client to compute, starting from the user credentials, the correct Authorization header that must be used to access
the specified HTTP resource.

Specifically, the WWW-Authenticate header is built by the following pieces:

realm: identifies the realm the user should authenticate to

qop: identifies the quality of protection - can assume different values, but the most widely used is auth
nonce: a randomly generated unique string

opaque: another random string

A sample WWW-Authenticate header is the following:

WWW-Authenticate: Digest realm="My Realm",

 qop="auth",

 nonce="32934ae8349d",

 opaque="348734dec9237af3388"

Note: This article shows how to implement digest access authentication when quality of protection's value is auth. Other

variants can be implemented using this tutorial as a starting point.

The following code snippet parses the WWW-Authenticate header, removing value quotes where used, and putting all key/value
pairs into a Hashtable.

Hashtable parseHttpDigest(String parts)

{

 Hashtable data = new Hashtable();

 int equalIndex;

 while((equalIndex = parts.indexOf("=")) >= 0)

 {

 String partName = parts.substring(0, equalIndex).trim();

 int endIndex = parts.indexOf(",", equalIndex);

 if(endIndex == -1)

 endIndex = parts.length();

 String partValue = parts.substring(equalIndex + 1, endIndex).trim();

 if(partValue.charAt(0) == '"')

 partValue = partValue.substring(1, partValue.length() - 1);

 data.put(partName, partValue);

 if(endIndex == parts.length())

 break;

Page 2 of 5
Printed on 2014-07-26

http://developer.nokia.com/community/wiki/HTTP_digest_access_authentication_in_Java_ME (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/Template:Note
http://www.google.com/search?hl=en&q=allinurl%3Ahashtable+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Ahashtable+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Ahashtable+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky

 parts = parts.substring(endIndex + 1);

 }

 return data;

}

Computing the response hash
Using the values parsed from the WWW-Authenticate HTTP header, the app must compute a response MD5 hash. Since Java
ME has no inbuilt support for MD5, a custom solution must be used, as the one available here: MD5 hash in Java ME.

The response hash in computed in the following steps:

A first MD5 hash is computed by using the supplied username and password, together with the realm specified by the server:

String A1 = md5(user + ":" + realm + ":" + pass);

A second MD5 hash is computed using the HTTP request method and the HTTP resource URI:

String A2 = md5(httpMethod + ":" + uri);

Before computing the final MD5 hash, the client must generate a random string, and increment (or initialize) a hex counter:

String cnonce = Integer.toString(Math.abs(new Random().nextInt()));

String ncvalue = "00000001";

By using the above values, together with the nonce and qop values supplied by the server, the final hash is computed as
follows:

String responseSeed = A1 + ":" + nonce + ":" + ncvalue + ":" + cnonce + ":" + qop + ":"

+ A2;

String response = md5(responseSeed);

The Authorization header
Once the response hash is calculated, the app can build the Authorization HTTP header that must be used to send the
authenticated HTTP request. The Authorization header must be prefixed by the "Digest" string, and is built up of the following
pieces:

username: the username supplied by the user

realm: same value sent by the server

nonce: same value sent by the server

uri: the URI that the client is accessing

opaque: same value sent by the server

qop: same value sent by the server

nc: a hex number that must be increased by the client for each request

cnonce: a random string generated by the client

response: the hash computed by the client starting from the WWW-Authenticate header sent by the server

An Authorization header can be built in Java ME as follows:

String authorizationHeader = "Digest username=\"" + user + "\", realm=\"";

authorizationHeader += realm + "\", nonce=\"" + nonce + "\",";

authorizationHeader += " uri=\"" + uri + "\", cnonce=\"" + cnonce;

Page 3 of 5
Printed on 2014-07-26

http://developer.nokia.com/community/wiki/HTTP_digest_access_authentication_in_Java_ME (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/MD5_hash_in_Java_ME
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Ainteger+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Amath+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Arandom+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky

authorizationHeader += "\", nc=" +ncvalue + ", response=\"" + response + "\", qop=" +

qop;

authorizationHeader += ", opaque=\"" + opaque + "\"";

The authenticated request
At this point, an authenticated HTTP request can be built by setting the Authorization header with the value computed in the
previous step and, if the used credentials are correct, the HTTP server replies with a 200 response code.

HttpConnection hc = (HttpConnection) Connector.open(url);

hc.setRequestProperty("Authorization", authorizationHeader);

responseCode = hc.getResponseCode();

The server replies to the
authenticated request with
a 200 response code

Testing
HTTPBin.org provides a useful service that can be used to test digest access authentication: using the URL
http://httpbin.org/digest-auth/{USERNAME}/{PASSWORD} , where {USERNAME} and {PASSWORD} can be customized with
the desired user credentials, Java app can be tested without a production server available.

The sample Java app attached to this article uses that testing server, but data can be easily changed in order to test against other
testing or production servers.

Summary
This article illustrates a possible Java ME implementation of HTTP digest access authentication.

Full source code of the sample app illustrated in this article is available here: Media:WikiHttpDigestAuth.zip.

Page 4 of 5
Printed on 2014-07-26

http://developer.nokia.com/community/wiki/HTTP_digest_access_authentication_in_Java_ME (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/File:Wiki_asha_httpdigestauth_ok.png
http://developer.nokia.com/community/wiki/File:Wiki_asha_httpdigestauth_ok.png
http://httpbin.org/
http://httpbin.org/digest-auth/{USERNAME}/{PASSWORD}
http://developer.nokia.com/community/wiki/images/4/4a/WikiHttpDigestAuth.zip?20130708093828

Page 5 of 5
Printed on 2014-07-26

http://developer.nokia.com/community/wiki/HTTP_digest_access_authentication_in_Java_ME (C) Copyright Nokia 2014. All rights reserved.

	HTTP digest access authentication in Java ME
	Introduction
	Implementation
	The unauthenticated request
	The WWW-Authenticate header
	Computing the response hash
	The Authorization header
	The authenticated request

	Testing
	Summary

