
How to access and manage the Microphone raw data in WP
Introduction
This article shows how to manage microphone raw data in Windows Phone, focusing on volume management. The
accompanying example project is a (work in progress) real application: Shooter Assistant which assists shooters during training
for specialities including: Olympic Trap, Skeet and Double Trap.

Shooter Assistant app
Olympic Trap shooting is one of the three major forms of competitive clay shooting, generally shot with a 12 gauge double
barreled shotgun. The shooter waits with the gun to shoulder and charged with two shots. When ready, the shooter shouts "PULL"
and a clay target ("plate") is immediately launched from a trap machine mounted to their left or right.

For best results, the shooter must fire between 5 and 6 tenths of a second after shouting "PULL" - the precise time varies because
the target can be launched with a 45° variation in angle from either left or right of the shooter and with an output speed of between
100 - 120 km/h. Reaction time is the key of success as results can heavily influenced being 1 tenths faster or slower.

The Shooter Assistant app improves performance by training the user to consistently fire within the optimal tenth of a second, and
by recording their reaction time for later analysis. It does this by recording when PULL is called and playing a beep after 0.5
seconds (the approximate point when the shooter should fire). It also records when the gun is fired and uses genetic algorithms
to match itself to your reaction time.

Home screen

Record Screen

Launch Schemes Screen

Creating the project
Install Windows Phone SDK

Create a new project by selecting the File | New Project menu command.

The New Project window will be displayed. Expand the Visual C# templates, and then select the Silverlight for Windows
Phone templates.

Select the Windows Phone Application template. Fill in the project name as desired. {Note|Don't call it simply "Microphone"}

In the Solution Explorer, right-click References and choose Add Reference.

Choose Microsoft.Xna.Framework from the list of .NET components and click the OK button.

If you see a dialog that warns about adding a reference to a Silverlight assembly, click the Yes button.

Add the following using statements to the top of your MainPage.xaml.cs file:

using System.IO;

using System.Windows.Threading;

using Microsoft.Xna.Framework;

using Microsoft.Xna.Framework.Audio;

Page 1 of 4
Printed on 2014-07-10

http://developer.nokia.com/community/wiki/How_to_access_and_manage_the_Microphone_raw_data_in_WP (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/How_to_access_and_manage_the_Microphone_raw_data_in_WP
http://developer.nokia.com/community/wiki/Portal:Windows_Phone_Multimedia
http://developer.nokia.com/community/wiki/Category:Windows_Phone_8
http://developer.nokia.com/community/wiki/Category:Windows_Phone_7.5
http://developer.nokia.com/community/wiki/File:ShooterAssistantHome.png
http://developer.nokia.com/community/wiki/File:ShooterAssistant.png
http://developer.nokia.com/community/wiki/File:ShooterAssistantLaunchSchemes.png
http://msdn.microsoft.com/en-us/library/ff402530%28v=vs.92%29.aspx

In MainPage.xaml.cs, declare variables as global members of your MainPage class:

public partial class MainPage : PhoneApplicationPage

{

 Microphone microphone = Microphone.Default;

 byte[] buffer;

 MemoryStream stream = new MemoryStream();

 SoundEffect sound;

 // Constructor

 public MainPage()

 {

Add the following code to the constructor of your MainPage class after the call to InitializeComponent

// Contructor

public MainPage()

{

 InitializeComponent();

 DispatcherTimer dt = new DispatcherTimer();

 dt.Interval = TimeSpan.FromMilliseconds(50);

 dt.Tick += delegate { try { FrameworkDispatcher.Update(); } catch { } };

 dt.Start();

 microphone.BufferReady += new

EventHandler<EventArgs>(microphone_BufferReady);

}

Now add the following method to manage Microphone raw data

void microphone_BufferReady(object sender, EventArgs e)

{

 microphone.GetData(buffer);

 // If you want to store the audio data in a stream

 stream.Write(buffer, 0, buffer.Length);

}

Detecting Volume changes. The RMS Method.
Declare a global variable in your MainPage class to set threshold:

public partial class MainPage : PhoneApplicationPage

{

 Microphone microphone = Microphone.Default;

 byte[] buffer;

 MemoryStream stream = new MemoryStream();

 SoundEffect sound;

 private int minimumThreshold = 500;

Page 2 of 4
Printed on 2014-07-10

http://developer.nokia.com/community/wiki/How_to_access_and_manage_the_Microphone_raw_data_in_WP (C) Copyright Nokia 2014. All rights reserved.

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

void microphone_BufferReady(object sender, EventArgs e)

{

 // Retrieve audio data

 microphone.GetData(buffer);

 // RMS Method

 double rms = 0;

 ushort byte1 = 0;

 ushort byte2 = 0;

 short value = 0;

 int volume = 0;

 rms = (short)(byte1 | (byte2 << 8));

 for (int i = 0; i < buffer.Length - 1; i += 2)

 {

 byte1 = buffer[i];

 byte2 = buffer[i + 1];

 value = (short)(byte1 | (byte2 << 8));

 rms += Math.Pow(value, 2);

 }

 rms /= (double)(buffer.Length / 2);

 volume = (int)Math.Floor(Math.Sqrt(rms));

 if ((volume > minimumThreshold))

 {

 System.Diagnostics.Debug.WriteLine("Threshold exceeded");

 System.Diagnostics.Debug.WriteLine("buffer.Length" + buffer.Length + "

Volume:" + volume);

 }

}

Start Recording

private void recordButton_Click(object sender, RoutedEventArgs e)

{

 if (microphone.State == MicrophoneState.Stopped)

 {

 microphone.BufferDuration = TimeSpan.FromMilliseconds(1000);

 buffer = new

byte[microphone.GetSampleSizeInBytes(microphone.BufferDuration)];

 microphone.Start();

 System.Diagnostics.Debug.WriteLine("Threshold setted to:" +

minimumThreshold);

 }

}

Stop Recording

private void stopButton_Click(object sender, RoutedEventArgs e)

{

 if (microphone.State == MicrophoneState.Started)

 {

 microphone.Stop();

Page 3 of 4
Printed on 2014-07-10

http://developer.nokia.com/community/wiki/How_to_access_and_manage_the_Microphone_raw_data_in_WP (C) Copyright Nokia 2014. All rights reserved.

http://www.google.com/search?q=new+msdn.microsoft.com

 }

}

Related Links
Using QMicrophone - Symbian platform

Page 4 of 4
Printed on 2014-07-10

http://developer.nokia.com/community/wiki/How_to_access_and_manage_the_Microphone_raw_data_in_WP (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/Using_QMicrophone

	How to access and manage the Microphone raw data in WP
	Introduction
	Shooter Assistant app
	Creating the project
	Detecting Volume changes. The RMS Method.
	Start Recording
	Stop Recording

	Related Links

