
How to implement purchase and restoration of multiple
items with In-App Purchase and Java ME
This article describes how to perform purchase and restoration of 2 or more items with In-App Purchase for Series 40 by piping
the purchase and restoration tasks in a thread. The In-App Purchase API does not support simultaneous multi-purchases or multi-
restorations on Series 40. This is because the In-App server blocks with the first incoming request. No further requests can be
processed by the server until the current one is completed. The client needs to implement the necessary logic, in order to queue
the multiple restorations or purchases locally and forward them to the sever only after the currently active task is completed.

Introduction
In this example we demonstrate how to purchase and restore simultaneously two DRM-protected items. Please note that
restoration can only be performed for Nokia DRM-protected content. Restoration of DRM-protected content currently cannot be
tested before the application is published and the content is DRM-protected by Nokia Store. We therefore use the In-App
Purchase Simulation of Nokia's SDK 1.1 for Java, for running and testing the MIDlet. The application consists of following
commands:

Display information about the first item

Display information about the second item

Perform a purchase for both the first and the second item

Restore both items

Note: In order for this example to properly work, one needs to create an IAP_VARIANTID.txt file inside the resource

directory of the working project, having six zeros 000000 as content

The information about each item's price, description and title is shown on the same screen as the commands. The result from the
purchase and restoration is shown on a new screen and there is a back command to return to the main screen. In the screen shots
below, a multiple purchase is attempted and the results for each purchase are asynchronously returned one after the other by the
server:

Page 1 of 10
Printed on 2014-03-07

http://developer.nokia.com/community/wiki/How_to_implement_purchase_and_restoration_of_multiple_items_with_In-App_Purchase_and_Java_ME(C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/How_to_implement_purchase_and_restoration_of_multiple_items_with_In-App_Purchase_and_Java_ME
http://developer.nokia.com/community/wiki/Template:Note
http://developer.nokia.com/community/wiki/File:Multi1screen.png
http://developer.nokia.com/community/wiki/File:MultiOptionExpandedscreen.png
http://developer.nokia.com/community/wiki/File:MultiPurchase1.png

In-App Purchase Simulation Settings
Before one can test the code for this MIDlet, the SDK's In-App Purchase Simulation settings need to be properly configured. Two
In-App items should be added to the simulation, each with a description, a price, a title and a Product ID. The Product ID is a
unique 6 digit identifier for the purchasable item. It is assigned automatically by Nokia when the item has passed the Store's
Quality Assurance process. Here, we use two arbitrary Product IDs. Please note, that these should be replaced with the actual
ones, before publishing the application.

The images below demonstrate

how to launch the In-App Purchase Simulation from the SDK

how to add Product IDs along with their metadata for purchase operations

Page 2 of 10
Printed on 2014-03-07

http://developer.nokia.com/community/wiki/How_to_implement_purchase_and_restoration_of_multiple_items_with_In-App_Purchase_and_Java_ME(C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/File:MultiPurchase2.png
http://developer.nokia.com/community/wiki/File:SelectInApp.png

and how to enable DRM-protected restoration simulation for each Product ID

Page 3 of 10
Printed on 2014-03-07

http://developer.nokia.com/community/wiki/How_to_implement_purchase_and_restoration_of_multiple_items_with_In-App_Purchase_and_Java_ME(C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/File:SelectInAppPurchasesTab.png

Notice that a custom delay can be manually entered by the user, to simulate the server's delay in returning a response.

The logic behind piping the requests
The Product IDs are stored in an array. This example uses only two items, but the same logic can be applied to three or more
items. All the multiple purchases and restorations occur inside a thread. The thread reads the array with the Product IDs, performs
either a purchase or restoration for each ID and pauses after every iteration. It regularly wakes up to see if the current purchase or
restoration is completed in order to continue with the next.

 //this loop iterates through the items that

need to be restored or purchased

 for(int i=0; i<ids.length ; i++)

 {

 //this is the item under restoration or purchase currently

 activeId ++;

 int status;

 if(!multipleRestoration) {

 status = manager.purchaseProduct(ids[i],

IAPClientPaymentManager.FORCED_AUTOMATIC_RESTORATION);

 }

 else {

 //sends the restoration request

 status = manager.restoreProduct(ids[i],

IAPClientPaymentManager.ONLY_IN_SILENT_AUTHENTICATION);

 }

 if (status != IAPClientPaymentManager.SUCCESS) {

Page 4 of 10
Printed on 2014-03-07

http://developer.nokia.com/community/wiki/How_to_implement_purchase_and_restoration_of_multiple_items_with_In-App_Purchase_and_Java_ME(C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/File:SelectInAppRestTab.png

 if (status != IAPClientPaymentManager.SUCCESS) {

 System.out.println("do not expect a call back");

 }

 //doesn't allow the restoration or purchase to proceed to the next item in line,

unless the current restoration receives a call back

 proceed = false;

 while(!proceed) {

 try {

 //sleeps for 2 seconds then wakes up and checks if it is time for the next item to

be restored

 Thread.sleep(2000);

 } catch (InterruptedException e) {

 // handle Thread interruption

 }

 }

 }

In the above snippet, the purchaseProduct call will cause the MIDlet to connect to the SDK's In-App Purchase Simulation, process
the request and return back the result via the purchaseCompleted call back method:

 //purchase call back

 public void purchaseCompleted(int status, String ticket) {

 if(status == IAPClientPaymentManager.SUCCESS) {

 resultForm.append("Purchase completed for item: " + (activeId + 1) + "\n");

 }

 else {

 resultForm.append("Purchase failed for item: " + (activeId + 1) + "\nThe status is: "

+ status + "\n");

 }

 // this unblocks the sleeping thread and performs purchase on the next item (if any)

 proceed = true;

 }

At the end of this call back method a boolean flag is turned to true in order to allow the sleeping thread proceed with the next
purchase.

Similarly, the restoreProduct call, will query the server and return a response via the restorationCompleted method:

 //restoration call back

 public void restorationCompleted(int status, String ticket) {

 if(status ==IAPClientPaymentListener.OK) {

 resultForm.append("Restoration completed for item: " + (activeId + 1) + "\n");

 }

 else {

 resultForm.append("Restoration failed for item: " + (activeId + 1) + "\nThe status

is: " + status + "\n");

 }

 //this unblocks the sleeping thread and performs restoration on the next item (if any)

 proceed = true;

 }

The MIDlet's code

Page 5 of 10
Printed on 2014-03-07

http://developer.nokia.com/community/wiki/How_to_implement_purchase_and_restoration_of_multiple_items_with_In-App_Purchase_and_Java_ME(C) Copyright Nokia 2014. All rights reserved.

http://www.google.com/search?hl=en&q=allinurl%3Asystem+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Athread+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Ainterruptedexception+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;

import javax.microedition.lcdui.Display;

import javax.microedition.lcdui.Displayable;

import javax.microedition.lcdui.Form;

import javax.microedition.lcdui.StringItem;

import javax.microedition.midlet.MIDlet;

import javax.microedition.midlet.MIDletStateChangeException;

import com.nokia.mid.payment.IAPClientPaymentException;

import com.nokia.mid.payment.IAPClientPaymentListener;

import com.nokia.mid.payment.IAPClientPaymentManager;

import com.nokia.mid.payment.IAPClientProductData;

import com.nokia.mid.payment.IAPClientUserAndDeviceData;

public final class InAppMultiItemsMIDlet

 extends MIDlet

 implements IAPClientPaymentListener, CommandListener, Runnable {

 private Form mainForm; //the main form

 private Form resultForm; //this form is used for the result for purchasing and

restoring

 private Display display;

 private Command exitCmd = new Command("Exit", Command.EXIT, 0);

 private Command showFirstID = new Command ("1st item", Command.OK, 1); //displays

information for the 1st item

 private Command showSecondID = new Command ("2nd item", Command.OK, 2); //displays

information for the 2nd item

 private Command buyAll = new Command("Buy All", Command.OK, 5); //performs

multipurchase

 private Command restoreAll = new Command ("Restore all", Command.OK, 6); //performs

multirestoation

 private Command backCmd = new Command ("Back", Command.BACK, 0); //this command returns

back to main form from the result form

 private StringItem info;

 IAPClientPaymentManager manager;

 Thread thread; //the multiple restoration thread

 boolean proceed = false; //blocks the multiple restoration thread until the current

restoration is completed

 String[] ids; //The list of Product IDs to be restored

 int activeId = -1; //keeps track of the current item under restoration or purchase

 boolean multipleRestoration = false; //this flag changes a multi purchase to multi

restoration

 protected void startApp() throws MIDletStateChangeException {

 display = Display.getDisplay(this);

 mainForm = new Form("In App Purchase");

 display.setCurrent(mainForm);

 //all the commands

 mainForm.addCommand(exitCmd);

 mainForm.addCommand(showFirstID);

 mainForm.addCommand(showSecondID);

 mainForm.addCommand(buyAll);

 mainForm.addCommand(restoreAll);

Page 6 of 10
Printed on 2014-03-07

http://developer.nokia.com/community/wiki/How_to_implement_purchase_and_restoration_of_multiple_items_with_In-App_Purchase_and_Java_ME(C) Copyright Nokia 2014. All rights reserved.

http://www.google.com/search?hl=en&q=allinurl%3Arunnable+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Athread+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky

 info = new StringItem("Select an option",null);

 mainForm.append(info);

 mainForm.setCommandListener(this);

 //some random values. These need to be changed with the appropriate Product IDs.

 ids = new String[2];

 ids[0] = "999999" ; //First Item

 ids[1] = "888888" ; //Second Item

 try {

 manager = IAPClientPaymentManager.getIAPClientPaymentManager();

 IAPClientPaymentManager.setIAPClientPaymentListener(this);

 } catch (IAPClientPaymentException e) {

 info.setLabel("Error");

 info.setText("IAPClientPaymentException:" + e.getMessage() + "\n");

 }

 }

 public void productDataReceived(int status, IAPClientProductData pd) {

 //Title, price and short description is shown

 if (status == IAPClientPaymentListener.OK) {

 String fullDescription = "";

 String title = pd.getTitle();

 String price = pd.getPrice();

 String sdesc = pd.getShortDescription();

 fullDescription = "Title:" + title + "\n" + "Price:" + price + "\n" + "Short

Description:" + sdesc + "\n";

 info.setLabel("Description");

 info.setText(fullDescription);

 }

 else {

 info.setLabel("Error");

 info.setText("Product data retrieval failed with code:" +status);

 }

 }

 //each operation needs the product ID of the item in question

 public void commandAction(Command c, Displayable d) {

 if(c == exitCmd) {

 notifyDestroyed();

 }

 if(c == showFirstID) {

 showDescription("999999");

 }

 if(c == showSecondID) {

 showDescription("888888");

 }

 if(c == buyAll) {

 multipleRestoration = false;

 doPurchaseRestoreAll(ids);

 }

Page 7 of 10
Printed on 2014-03-07

http://developer.nokia.com/community/wiki/How_to_implement_purchase_and_restoration_of_multiple_items_with_In-App_Purchase_and_Java_ME(C) Copyright Nokia 2014. All rights reserved.

http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky

 if(c == restoreAll) {

 multipleRestoration = true;

 doPurchaseRestoreAll(ids);

 }

 if(c == backCmd) {

 display.setCurrent(mainForm);

 }

 }

 public void showDescription (String id) {

 int status = manager.getProductData(id);

 if (status != IAPClientPaymentManager.SUCCESS) {

 System.out.println("Do not expect a call back\n");

 }

 }

 public void doPurchase(String id) {

 resultForm = new Form("Purchase Result");

 resultForm.addCommand(backCmd);

 resultForm.setCommandListener(this);

 display.setCurrent(resultForm);

 manager.purchaseProduct(id, IAPClientPaymentManager.FORCED_AUTOMATIC_RESTORATION);

 }

 public void doPurchaseRestoreAll(String[] ids) {

 //the thread that handles the multiple restoration and purchase

 thread = new Thread(this);

 thread.start();

 }

 //purchase call back

 public void purchaseCompleted(int status, String ticket) {

 if(status == IAPClientPaymentManager.SUCCESS) {

 resultForm.append("Purchase completed for item: " + (activeId + 1) + "\n");

 }

 else {

 resultForm.append("Purchase failed for item: " + (activeId + 1) + "\nThe status is: "

+ status + "\n");

 }

 // this unblocks the sleeping thread and performs purchase on the next item (if any)

 proceed = true;

 }

 //restoration call back

 public void restorationCompleted(int status, String ticket) {

 if(status ==IAPClientPaymentListener.OK) {

 resultForm.append("Restoration completed for item: " + (activeId + 1) + "\n");

 }

 else {

 resultForm.append("Restoration failed for item: " + (activeId + 1) + "\nThe status

is: " + status + "\n");

 }

 //this unblocks the sleeping thread and performs restoration on the next item (if any)

 proceed = true;

Page 8 of 10
Printed on 2014-03-07

http://developer.nokia.com/community/wiki/How_to_implement_purchase_and_restoration_of_multiple_items_with_In-App_Purchase_and_Java_ME(C) Copyright Nokia 2014. All rights reserved.

http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Asystem+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Athread+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky

 }

 public void run() {

 //Displays the restoration result page

 if(!multipleRestoration) {

 resultForm = new Form("Purchase Result");

 }

 else {

 resultForm = new Form("Restoration Result");

 }

 resultForm.addCommand(backCmd);

 resultForm.setCommandListener(this);

 display.setCurrent(resultForm);

 //this loop iterates through the items that need to be restored or purchased

 for(int i=0; i<ids.length ; i++)

 {

 //this is the item under restoration or purchase currently

 activeId ++;

 int status;

 if(!multipleRestoration) {

 status = manager.purchaseProduct(ids[i],

IAPClientPaymentManager.FORCED_AUTOMATIC_RESTORATION);

 }

 else {

 //sends the restoration request

 status = manager.restoreProduct(ids[i],

IAPClientPaymentManager.ONLY_IN_SILENT_AUTHENTICATION);

 }

 if (status != IAPClientPaymentManager.SUCCESS) {

 System.out.println("do not expect a call back");

 }

 //doesn't allow the restoration or purchase to proceed to the next item in line,

unless the current restoration receives a call back

 proceed = false;

 while(!proceed) {

 try {

 //sleeps for 2 seconds then wakes up and checks if it is time for the next item to

be restored

 Thread.sleep(2000);

 } catch (InterruptedException e) {

 // handle Thread interruption

 }

 }

 }

 activeId = -1;

 }

 //unimplemented methods

 protected void destroyApp(boolean arg0) throws MIDletStateChangeException {

 }

 protected void pauseApp() {

Page 9 of 10
Printed on 2014-03-07

http://developer.nokia.com/community/wiki/How_to_implement_purchase_and_restoration_of_multiple_items_with_In-App_Purchase_and_Java_ME(C) Copyright Nokia 2014. All rights reserved.

http://www.google.com/search?hl=en&q=allinurl%3Asystem+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Athread+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Ainterruptedexception+java.sun.com&btnI=I%27m Feeling Lucky

 }

 public void userAndDeviceDataReceived(int arg0,IAPClientUserAndDeviceData arg1) {

 }

 public void productDataListReceived(int arg0, IAPClientProductData[] arg1) {

 }

 public void restorableProductsReceived(int status, IAPClientProductData[] list) {

 }

}

Resources
The source code of this MIDlet is available for download from here: File:InAppMultiItemsMIDletSource.zip

The binary files of this MIDlet are available for download from here: File:InAppMultiItemsMIDletBinaries.zip

See also
The Developer's guide - In App Purchase

Page 10 of 10
Printed on 2014-03-07

http://developer.nokia.com/community/wiki/How_to_implement_purchase_and_restoration_of_multiple_items_with_In-App_Purchase_and_Java_ME(C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/File:InAppMultiItemsMIDletSource.zip
http://developer.nokia.com/community/wiki/File:InAppMultiItemsMIDletBinaries.zip
http://www.developer.nokia.com/Resources/Library/Java/#!developers-guides/in-app-purchase.html

	How to implement purchase and restoration of multiple items with In-App Purchase and Java ME
	Introduction
	In-App Purchase Simulation Settings
	The logic behind piping the requests
	The MIDlet's code
	Resources
	See also

