
Java ME Porting using preprocessor directives
This article describes the main methods you can use to port your app.

Build one Version per Device Series
This approach is to simply develop an application for a specific series of models, for example, the Nokia Series 40 Edition 1. The
problem here is that the more APIs you support, or the more your application stresses the device, the more you fragment the
series since support for advanced APIs highlights the small differences within the series. For example, two similar devices will
have wildly varying performance results due to the number of images on the screen.

Dynamic Detection of the Handset
This option involves testing your application during execution. For example, suppose your model is a Nokia handset. Your
application would detect the device model during execution and select the appropriate behaviour depending on the model.

This allows you to call methods only available on specific handsets—like fullscreen mode. You have to create one class for each
specific implementation (NokiaCanvas, SiemensCanvas, and StandardCanvas). The following code demonstrates:

try

{

 Class.forName("com.nokia.mid.ui.FullCanvas");

 Class myClass = Class.forName("NokiaCanvas");

 myCanvas = (ICanvas)(myClass.newInstance());

}

catch (Exception exception1)

{

 try

 {

 Class.forName("com.siemens.mp.color_game.GameCanvas");

 Class myClass = Class.forName("SiemensCanvas");

 myCanvas = (ICanvas)(myClass.newInstance());

 }

 catch (Exception exception2)

 {

 myCanvas = (ICanvas) new StandardCanvas();

 }

}

You basically create an interface, Icanvas, and three implementations, one for Nokia devices, one for Siemens devices, and
another one for standard MIDP devices.

Then you use Class.forName in order to determine whether a proprietary API is available. If no exception is thrown, you use the
NokiaCanvas. Otherwise, it means the current device doesn't support this API. In this case, you test another API (for example,
Siemens). If another exception is thrown, it means you have to use the standard canvas.

Using a Preprocessor
Using a preprocessor, your source code will be automatically activated or deactivated depending on certain conditions.

For example, to set the full screen mode on a Nokia device, you have to extend FullCanvas, not Canvas. On a MIDP 2 device,
you have to call setFullScreenMode. On a MIDP 1 device, this isn't possible, so you stay in a non-fullscreen mode.

//#ifdef NOKIA

 extends com.nokia.mid.ui.FullCanvas

//#else

Page 1 of 2
Printed on 2014-03-09

http://developer.nokia.com/community/wiki/Java_ME_Porting_using_preprocessor_directives (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/Java_ME_Porting_using_preprocessor_directives
http://www.google.com/search?hl=en&q=allinurl%3Aexception+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Aexception+java.sun.com&btnI=I%27m Feeling Lucky

 extends Canvas

//#endif

 {

...

//#ifndef MIDP2

 setFullScreenMode(true);

//#endif

A preprocessor processes this source code, then you set the directives. So, to generate the application for a Nokia device:

//#define NOKIA

The preprocessor produces:

 extends com.nokia.mid.ui.FullCanvas

 {

For a MIDP 2 device, (“//#define MIDP 2”), it produces:

 extends Canvas

 {

 setFullScreenMode(true);

This solution allows for one body of source code to be adapted to each device model. You need only develop to the reference
source code, including the directives. All other modifications made to the processed files will be lost after the next preprocessing.

Though this solution relies on the old concept of preprocessing, this is the only technique open-ended enough to solve all the
problems you'll encounter trying to port to multiple device models.

Page 2 of 2
Printed on 2014-03-09

http://developer.nokia.com/community/wiki/Java_ME_Porting_using_preprocessor_directives (C) Copyright Nokia 2014. All rights reserved.

http://www.google.com/search?hl=en&q=allinurl%3Acanvas+java.sun.com&btnI=I%27m Feeling Lucky
http://www.google.com/search?hl=en&q=allinurl%3Acanvas+java.sun.com&btnI=I%27m Feeling Lucky

	Java ME Porting using preprocessor directives
	Build one Version per Device Series
	Dynamic Detection of the Handset
	Using a Preprocessor

