
Making a facing direction aware camera in Qt
This article explains how to implement a camera that is aware of the direction it is facing. Developers can use this data to
enhance the user experience. This can be applied for augmented reality applications, camera based games or some interesting
UI - for example, we include a demonstration app that let's you throw baseballs at your surroundings and punch holes that stick to
their positions in real world.

Note: This is an entry in the PureView Imaging Competition 2012Q2

Introduction
This article shows how to implement a camera that has a way of determining the direction it is facing and build upon this data to
enhance the user experience. We use various sensors (namely accelerometer, magnetometer\compass and gyroscope) to
determine current positioning of the device. Elements can then be added to camera frames thus adding Augmented Reality
dimension to the app.

Please note, that generally the gyroscope is needed to fully realise the idea. Since there is no live Symbian^3 device in the
market (at the time of writing) that has a gyroscope, we use compass sensor instead. The article will also touch the concept of how
the gyroscope should be used in this instance. The media player is loading...

Screenshots
A couple of screenshots of the application in action:

Throwing the baseball

After a couple of seconds and moving the device a bit

The Idea
To make this work we:

1. create a data model that allows the device to process the positioning. With it we should be able to determine current
facing, save positions and approximate field of vision.

2. use the sensors to add real life data to our data model;

3. build on top of this base with our example application to add some Augmented Reality fun.

Space model
We can imagine the data model as a surface of a sphere. Any point on the surface can be determined by two coordinates, in this
case we'll call them azimuth and tilt. GPS uses the same idea to pinpoint location.

The picture below illustrates this model. If we regard the red dot inside the sphere as the camera we can see that it's possible to
tell the direction the camera would be facing with those coordinates:

Page 1 of 8
Printed on 2014-07-29

http://developer.nokia.com/community/wiki/Making_a_facing_direction_aware_camera_in_Qt (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/Making_a_facing_direction_aware_camera_in_Qt
http://developer.nokia.com/community/wiki/Template:Note
http://developer.nokia.com/community/wiki/PureView_Imaging_Competition_2012Q2
http://developer.nokia.com/community/wiki/File:FacingAware_Cam0.png
http://developer.nokia.com/community/wiki/File:FacingAware_Cam1.png

To complicate things a little bit, the camera actually sees a certain ranges of azimuth and tilt and the cross is just the center
position of the frame.

We can calculate that though, provided we know the angle of view of the camera, or in our terms: the vertical and horizontal
angles the camera can span. We can also easily save positions with our model and check if those are inside our angle of view.

Use of sensors
We use accelerometer for the most part, as it can determine the positioning of the device in all world axes but one. Accelerometer
calculates the accelerating force when the device is moving. So if the device was to move sharply in a certain direction the
accelerometer would provide us with that info.

When the device is not moving though, there is one force that is still affecting the sensor: gravity. The accelerometer always
detects it so we can determine the direction of the ground in regards to the device. That is how we determine the vertical facing.

One shortcoming of the accelerometer is that we cannot calculate the horizontal facing from gravity alone. That's where the
magnetometer comes in. The magnetometer sensor can detect Earth's magnetic field, so in essence, it can act as a compass and
provide us with current azimuth. We can use QCompass class that wraps magnetometer nicely for us.

We use the compass mainly because most of the devices have that capability these days as opposed to gyroscope.
Magnetometer, however is easily tempered with: it requires calibration upon every use, it can be disturbed by nearby magnetic
objects, wires, etc. Gyroscope, on the other hand, calculates the speed that the device is turning at, so in essence it's the
accelerometer of rotation. We will have the implementation for it in our example too as the gyroscopes start flooding to the mobile
devices.

Implementation
Let's discuss the most important parts of the code.

Moving average
The first thing we need to have is the means to clean the noise that comes from the sensors. One of the easiest ways to do that is
with a moving average.

We take a certain number of readings and calculate the average. This tends to eliminate all the sudden spikes and trembles so
instead of jumpy behavior we get a more flowing change in values. This, however, might delay the change in values, as it requires

Page 2 of 8
Printed on 2014-07-29

http://developer.nokia.com/community/wiki/Making_a_facing_direction_aware_camera_in_Qt (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/File:FacingAware_Model1.png
http://developer.nokia.com/community/wiki/File:FacingAware_Model2.png

a few changed values to come in first before the average starts changing too.

This is implemented in CMovingAverage class since we will have quite a few sensors to deal with. It implements the behaviour

mentioned above and adds a simple to use interface. Please note, that the example uses different count of values stored for
different sensors. The rate in which sensors report changes varies greatly. For example for each of accelerometer's axes 10
values are taken. Compass, on the other hand, uses only one and the rate is still noticeably laggy.

Positioning
We use CMovingAverage to store information inside CCamPositioning class, which is a handy class that has all the sensors and

their interworkings combined to get the data we need:

class CCamPositioning : public QObject

{

 ...

public slots:

 void AccelChange();

 void CompassChange();

 void RotationChange();

public://getters

 float getAzimuth();//in radians

 float getTilt();//in radians

 float getRotation();//in radians

 float getCompassCalibration(){return iCalibrationLevel;}

private:

 qreal getAccelerationValue(int axis);

private:

 float iCalibrationLevel;

 bool iHasGyro;

 CMovingAverage iAccelerometerVal[3];

 CMovingAverage iRotationVal[3];

 CMovingAverage iCompassVal;

 QAccelerometer iAccelerometer;

 QCompass iCompass;

 QRotationSensor iRotationSensor;

};

one thing to note here is the iHasGyro property which changes if the QRotationSensor detects a change in z axis rotation. That

basically shows that gyroscope is present on the device and can be used for our benefit. Below we can see the parts where the
data differentiates between QCompass and QRotationSensor based on the value of iHasGyro.

void CCamPositioning::CompassChange()

{

 iCompassVal.addValue(iCompass.reading()->azimuth());

 iCalibrationLevel = iCompass.reading()->calibrationLevel();

 if (iHasGyro)

 iCalibrationLevel = 1.0;//gyroscopes don't neeed to be calibrated, so we imply

it's calibrated if it is used

}

void CCamPositioning::RotationChange()

{

Page 3 of 8
Printed on 2014-07-29

http://developer.nokia.com/community/wiki/Making_a_facing_direction_aware_camera_in_Qt (C) Copyright Nokia 2014. All rights reserved.

http://doc.trolltech.com/latest/qobject.html

 //add values for moving average calculation on change signal

 QRotationReading *aReading = iRotationSensor.reading();

 iRotationVal[0].addValue(aReading->x());

 iRotationVal[1].addValue(aReading->y());

 iRotationVal[2].addValue(aReading->z());

 if (!iHasGyro)

 if (aReading->z() != 0)//if the horizontal rotation changes, we have a gyroscope

on the device

 iHasGyro = true;

}

float CCamPositioning::getAzimuth()

{

 if (iHasGyro)

 //if gyro is present, we use it's z value and turn that to radians

 return iRotationVal[2].getValue() / 180 * M_PI;

 else

 //no gyro - we use compass. BTW compass shows fidderent values when he phone is

pitched, yawned etc. so we add the rotation to the value to compensate this

 return iCompassVal.getValue() / 180.0 * M_PI + getRotation();

}

Data Model
We take all this and use it inside CCameraViewField class which represents our data model and here it all comes together. This

class stores the camera view angles and comes with a struct SViewData that both helps us transfer positioning data between

components and has methods that help calculating point visibility and positions on the view plane.

Two of them require a special mention. First - isPointWithin(float aAz, float aTilt). It uses normalizeAngle(float) which

returns angle nomralized for comparison operations, and rotatePt(QPoint, QPoint, float) which rotates a point around another

point a given amount of radians.

bool SViewData::isPointWithin(float aAz, float aTilt)

{

 //initializing unrotated values

 float n_iAzimuth = normalizeAngle(iAzimuth);

 float n_aAz = normalizeAngle(aAz);

 //create a viewplane rectangle using current center point and camera angle of view

 QPointF rectangle[4];

 rectangle[0] = QPointF(n_iAzimuth-iHorizontalAngle/2,iTilt-iVerticalAngle/2);

 rectangle[1] = QPointF(n_iAzimuth-iHorizontalAngle/2 + iHorizontalAngle,

iTilt-iVerticalAngle/2);

 rectangle[2] = QPointF(n_iAzimuth-iHorizontalAngle/2 + iHorizontalAngle,

iTilt-iVerticalAngle/2+iVerticalAngle);

 rectangle[3] = QPointF(n_iAzimuth-iHorizontalAngle/2,

iTilt-iVerticalAngle/2+iVerticalAngle);

 //rotate all four corners of the rectangle around the center (if camera was not held

perfectly flat)

 for (int i =0; i < 4; i++)

 rectangle[i] = rotatePt(rectangle[i], QPointF(n_iAzimuth, iTilt), iRotation);

 //check if the given point is within the viewplane rectangle

 bool isIn = false;

 int sign = 0;

Page 4 of 8
Printed on 2014-07-29

http://developer.nokia.com/community/wiki/Making_a_facing_direction_aware_camera_in_Qt (C) Copyright Nokia 2014. All rights reserved.

http://doc.trolltech.com/latest/qpointf.html
http://doc.trolltech.com/latest/qpointf.html
http://doc.trolltech.com/latest/qpointf.html
http://doc.trolltech.com/latest/qpointf.html
http://doc.trolltech.com/latest/qpointf.html
http://doc.trolltech.com/latest/qpointf.html

 for (int i = 0; i < 4; i++)

 {

 int i0 = i;

 int i1 = (i+1) % 4;

 float A = 0.5 * (rectangle[i1].x() * aTilt - rectangle[i1].y()*n_aAz -

rectangle[i0].x()*aTilt +

 rectangle[i0].y() * n_aAz + rectangle[i0].x()*rectangle[i1].y()

- rectangle[i0].y()*rectangle[i1].x());

 if (i == 0)

 {

 sign = A;

 }

 if ((A >= 0 && sign >= 0) || (A < 0 && sign < 0))

 {

 if (i == 3)

 isIn = true;

 }

 else

 {

 break;

 }

 }

 return isIn;

}

The check itself divides the view rectangle into 4 triangles, with a shared vertex - the point that is being checked. The area of one
triangle is determined by this formula (where vertical bars represent the determinant):

' 1 | x0 y0 1 |

A = - | x1 y1 1 |,

 2 | x2 y2 1 |

And the quered point is within the view plane only when all 4 triangles have the area that is eihter negative or positive in all of
them. You can check various other approaches here Formula for Point in Rectangle .

The second method is a small but esssential one:

QPointF SViewData::getDistFromCenter(float aAz, float aTilt)

{

 QPointF pt = QPointF((aAz - iAzimuth)/(iHorizontalAngle/2),

(aTilt-iTilt)/(iVerticalAngle/2));

 pt = rotatePt(pt, QPointF(0,0), iRotation);

 return pt;

}

This one returns where is the point, that is checked, in screen coordinates (provided it is withing the view plane in the first place).
The returned X & Y values are within range [-1;1]; so this can be used on any sized screen\image: when multiplied by the
dimensions of the target, we get exact X and Y points where the final point sits on the screen.

Camera access
Next up is the camera module - CCamera class, which is basically a simplified adaptation of Qt Camera Demo. We wrap the

QCamera in it to provide ourselves with as simple to use camera, as we can get out with. It uses CMyVideoSurface that is derived

from QAbstractVideoSurface to provide us with the frames from the viewfinder to work with.

Once we start the camera with enableCamera() method it starts emiting signals whenever a new frame arrives to the video surface.

Page 5 of 8
Printed on 2014-07-29

http://developer.nokia.com/community/wiki/Making_a_facing_direction_aware_camera_in_Qt (C) Copyright Nokia 2014. All rights reserved.

http://mathforum.org/library/drmath/view/54386.html
http://doc.trolltech.com/latest/qpointf.html
http://doc.trolltech.com/latest/qpointf.html
http://doc.trolltech.com/latest/qpointf.html
http://doc.trolltech.com/latest/qpointf.html
http://developer.nokia.com/community/wiki/index.php?title=File:Qtcamerademo_v1_2_1_NokiaDeveloperExample_Qt.zip&action=edit&redlink=1

By connecting to this signal we are ready to go with our baseball shooter.

class CCamera : public QObject

{

 ...

signals:

 void frameArrived();

private:

 void enableCamera();

 ...

};

Throwing baseballs example
We build the augmented reality game on top of the base we've just covered. To be honest it's very straightforward compared to the
bottom layer.

There is the MainWidget class that is a derived QWidget which controls all the Views. Speaking of them there are three: CMainView,

CCameraCalibView and CCompassCalibView.

Calibration screens
Compass calibration view displays a graphical progress bar indicating the magnetometer calibration level and instructions to
calibrate it.

Camera calibration view displays instructions for calibrating the camera - or to be specific determining the camera view angle.
This is done by moving the center of the viewfinder to any of the screen corners, so the spot that was in the corner ends up in the
very center. Noting the positions of those two points we can calculate the distance and approximate angle it has traveled. That
would be half of the view angle. The picture below illustrates that:

Please note, however that this is just an approximation and given noisiness of the sensors, especially magnetometer, it might take
a few tries to get it right. The default values in the code are the ones that worked best with N8.

Main View
The third View is the CMainView. Here all the magic happens. When the screen is clicked the ball is thrown to where the camera is

currently pointing. After a certain amount of time the ball is shown to crack a hole onto the image which keeps it's positioning
when the camera is moved around.

Whenever a new frame arrival signal is emitted the redraw of the widget is forced, thus checking the current screen position,
checking the list of thrown balls and the holes they made and their position in regards to the view plane. If a point is within a view
plane, it's position in the model is transposed to screen coordinates using SViewData struct and it's drawn onto the frame. The

flying ball animation is done using a QTimer that is constantly emiting update events which allows for the ball image to shrink and

giving an illusion it's flying into the depth. The code below illustrates this process

void CMainView::drawBaseballs(QPainter *aPainter, QSize aPhotoSize, SViewData aData)

{

 for (int i =0; i < iBaseballs.count(); i++)

 {

 //check if object No 'i' is withinb the view plane

 SOverlayObject obj = iBaseballs.at(i);

Page 6 of 8
Printed on 2014-07-29

http://developer.nokia.com/community/wiki/Making_a_facing_direction_aware_camera_in_Qt (C) Copyright Nokia 2014. All rights reserved.

http://doc.trolltech.com/latest/qobject.html
http://developer.nokia.com/community/wiki/File:FacingAware_CamCalibration.png
http://doc.trolltech.com/latest/qpainter.html
http://doc.trolltech.com/latest/qsize.html

 if (aData.isPointWithin(obj.iPosition.x(), obj.iPosition.y()))

 {

 //get ball position in relative screen coordinates [-1;1]

 QPointF dist =aData.getDistFromCenter(obj.iPosition.x(), obj.iPosition.y());

 int posX = (aPhotoSize.width() /2) * dist.x() + (aPhotoSize.width() /2);

 int posY = (aPhotoSize.height() /2) * dist.y() + (aPhotoSize.height() /2);

 //calculate the size of the drawn image in accordance to how much time

passed since the launch of the balll

 int iSize = int (200.0 * ((2-obj.iAge)/2.0));

 //draw the image using the calculated screen coords and the animated ball

size

 aPainter->drawImage(QRect(posX-iSize/2,posY-iSize/2,iSize,iSize), iBallImg,

iBallImg.rect());

 }

}

For full source please check Media:FacingAware code.zip

Considerations
These are the few considerations to take notice of and maybe improve in regard to your needs.

Coincidently, since this article was created for PureView Imaging Competition, the device that this competition is dedicated to

is the first of Symbian devices to be able to handle the article's idea at it's fullest. The Nokia 808 seems to be the first (and
hopefully that'll start to be a standard equipment) Nokia's device to sport a gyroscope sensor, which opens a plethora of new
opportunities for app developers. Sadly, since, at the time of writing, there was no way to test the working of the gyroscopic
implementation. There is no physical device and because of that simulator doesn't simulate the gyroscope values. I'll update
the article if/when opportunity to do that arises.

As mentioned in the article, the bottleneck here is the compass sensor. It's great for applications requiring relatively less
accuracy and speed. In this case, however, it updates too slow and in too big of steps sometimes and that throws off the whole
augmented reality. One other thing, whilst filming the presentation video, I've made myself a stabilising contraption for this
purpose. Since it had metal parts touching around the device, the magnetometer went haywire. Please note your surroundings
if your application uses the compass side of implementation.

The moving average is a great and easy way of evening out spikes in noisy sensors. However it still has a bit of "trembling" if
too few values are used and is quite inefficient when using many values. If application requires some precision movement, it
might be a good idea to start your research here, hunting for more accuracy in interpolation and speed of operation.

This article was first thought to be implemented using OpenGL for drawing, since it allows for faster drawing, easier and more
efficient effect implementation through shaders and faster image manipulation (image rotation with QPainter can overthrow the

processor quite quickly.). Though since the size of the idea got a bit out of hand and it seemed there were some problems with
accessing frame data from VideoSurface directly as Textures (Please check camera guide 4.5.4.1 Handles) the idea was
scrapped. Though if this was to be used inside a game OpenGL should be the way to go.

Summary
This article introduced the camera that can detect its direction and a way to use it for developers benefit. With the advent of
gyroscopes in mobile devices, camera apps that have directional awareness can greatly expand the field to which the mobile
devices can be applied to. This might be used in navigation, casual games (even requiring as precise movement as First person
shooters), photo sharing networks etc; so it is really beneficial to invest some time to research the idea of direction aware
cameras.

Page 7 of 8
Printed on 2014-07-29

http://developer.nokia.com/community/wiki/Making_a_facing_direction_aware_camera_in_Qt (C) Copyright Nokia 2014. All rights reserved.

http://doc.trolltech.com/latest/qpointf.html
http://doc.trolltech.com/latest/qrect.html
http://developer.nokia.com/community/wiki/images/0/01/FacingAware_code.zip?20120605132630
http://www.developer.nokia.com/info/sw.nokia.com/id/d34673cd-50fc-4b22-887c-869e1167e81f/Camera_Guide.html

Page 8 of 8
Printed on 2014-07-29

http://developer.nokia.com/community/wiki/Making_a_facing_direction_aware_camera_in_Qt (C) Copyright Nokia 2014. All rights reserved.

	Making a facing direction aware camera in Qt
	Introduction
	Screenshots
	The Idea
	Space model
	Use of sensors

	Implementation
	Moving average
	Positioning
	Data Model
	Camera access

	Throwing baseballs example
	Calibration screens
	Main View

	Considerations
	Summary

