
Nokia notifications on the Asha software platform

16 Jun
2013

This article explains how to implement and use the Nokia Notifications API (for Java) on the Nokia Asha software
platform.

Introduction
The Nokia Notifications API (introduced with the Nokia Asha software platform 1.0) provides a mechanism to deliver app-specific
push messages from a remote server to a Java app. Notifications bring several advantages over alternative approaches (for
instance, periodical server polling) including the following:

Message delivery when the app is not running

Fast message delivery

Reduced battery consumption

This article shows how to implement a complete system that allows the setup and delivery of Nokia notifications.

Notification from test app arriving in
device

Notification system overview
The system includes:

A Java app that uses the Nokia Notifications Client API to enable and handle Nokia notifications

A remote Web server that pushes Nokia notifications to the Java app instance by using the Nokia Notifications Service API

The Nokia Notification server, that communicates with both the Java app and the remote server

The following picture summarizes the interactions among the various elements:

Page 1 of 9
Printed on 2014-03-12

http://developer.nokia.com/community/wiki/Nokia_notifications_on_the_Asha_software_platform (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/Nokia_notifications_on_the_Asha_software_platform
http://developer.nokia.com/community/wiki/Template:FeaturedArticle
http://www.developer.nokia.com/Resources/Library/Java/#!developers-guides/nokia-notifications.html
http://developer.nokia.com/community/wiki/File:Nokiawiki_asha_notifications_device.png
http://developer.nokia.com/community/wiki/File:Nokiawiki_asha_notifications_device.png
http://www.developer.nokia.com/Resources/Library/Java/#!developers-guides/nokia-notifications/nokia-notifications-client-api.html
http://www.developer.nokia.com/Resources/Library/Java/#!developers-guides/nokia-notifications/nokia-notifications-service-api-rest-api.html

Overview of the Nokia Notification Service

1. On Step 1 the Java app takes care of enabling Nokia notifications

2. After a successful activation, on Step 2, the Java app requests the Notification ID, that is sent back to the app on Step 3
3. In order to be able to send notifications to the Java app, the remote server needs to receive and store its Notification ID,

that is sent by the app on Step 4
4. When the remote server needs to send a notification to the Java app, it sends an HTTP POST request to the Nokia server,

as shown by Step 5
5. Step 6 finally illustrates how Nokia server takes care of actually delivering the notification to the Java app

Registering the notification service
Before actually integrating Nokia notifications in a Java app, it's necessary to register the specific notification service using the
Notifications API Developer Console . This step is needed in order to get all the information needed to integrate the service in an
app, and specifically:

service ID

application ID

service secret

Note: Since the service ID must be unique across all apps and services, it is good practice to use the Reverse domain name

notation .

Registering the notification service

Page 2 of 9
Printed on 2014-03-12

http://developer.nokia.com/community/wiki/Nokia_notifications_on_the_Asha_software_platform (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/File:Nokiawiki_asha_notifications_overview.png
http://developer.nokia.com/community/wiki/File:Nokiawiki_asha_notifications_overview.png
https://account.nnapi.ovi.com/cm/Web/index.html
http://developer.nokia.com/community/wiki/Template:Note
http://en.wikipedia.org/wiki/Reverse_domain_name_notation
http://developer.nokia.com/community/wiki/File:Nokiawiki_asha_notifications_devconsole.png

Implementing Nokia notifications in a Java app
The Nokia Notifications Client API provides full support to quickly implement and integrate Nokia notifications in a Java app.

The typical workflow that a Java app follows in order to integrate Nokia notifications is the following:

1. Open a session (NotificationSession) that allows the Java app to communicate with the Nokia Notification Enabler

2. Register the application (via NotificationSession.registerApplication) to enable the delivery of Nokia notifications

3. Receive the Notification ID sent from the Notification Enabler: the Notification ID is an unique identifier that can be used
by a remote server to send notifications to that specific device

4. Send the Notification ID to a remote server: typically, a remote Web server will receive and store the device's
Notification ID in a database, together with other information that is relevant to the requested notifications (for instance, an
user could desire to receive notifications only for a soccer team - in this case, the remote server should store the team
information in order to filter the notifications that should be sent to the device)

5. Handle incoming notifications by implementing the NotificationSessionListener.messageReceived method: this
method has a single argument of (NotificationMessage type, that contains all the information of the received notification

Enabling Nokia notifications
As seen in the previous section, enabling notifications basically requires the Java app to open a NotificationSession and call its

registerApplication method.

Opening a notification session
A NotificationSession is opened by using the NotificationSessionFactory.openSession static method. This method requires

four arguments:

1. the MIDlet instance that requires the notification service

2. the service ID (this argument is deprecated, but must still be specified)

3. the application ID associated with the notification service

4. an object implementing the NotificationSessionListener interface

try

{

 session = NotificationSessionFactory.openSession(midlet, "com.jappit.example.wikipush",

"wikipush.example.jappit.com", listener);

}

catch(Exception e)

{

 // handle the raised exception

}

The NotificationSessionListener interface defines the methods that will be responsible for managing all the messages, state

changes and information related to the notification session. Specifically, the following methods need to be implemented:

stateChanged : this method receives all the state changes notifications from the Notification Enabler, so that the Java app
can properly manage them. Specifically, a session can be OFFLINE , CONNECTING , or ONLINE .

infoReceived : this method is used to receive the notification information, containing the Notification ID

messageReceived : this method is called when a new Nokia notification is received, so that the Java app can properly
handle that

Registering the app to receive notifications
Once a session is opened, it's possible to use its registerApplication method to enable notfications, so that new messages are
actually delivered to the device.

try

{

 session.registerApplication();

Page 3 of 9
Printed on 2014-03-12

http://developer.nokia.com/community/wiki/Nokia_notifications_on_the_Asha_software_platform (C) Copyright Nokia 2014. All rights reserved.

http://www.developer.nokia.com/Resources/Library/Java/#!developers-guides/nokia-notifications/nokia-notifications-client-api.html
http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/com/nokia/notifications/NotificationSession.html
http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/com/nokia/notifications/NotificationSession.html#registerApplication()
http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/com/nokia/notifications/NotificationSessionListener.html#messageReceived(com.nokia.notifications.NotificationMessage)
http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/com/nokia/notifications/NotificationMessage.html
http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/com/nokia/notifications/NotificationSession.html#registerApplication()
http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/com/nokia/notifications/NotificationSessionFactory.html#openSession(MIDlet, java.lang.String, java.lang.String, com.nokia.notifications.NotificationSessionListener)
http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/com/nokia/notifications/NotificationSessionListener.html
http://www.google.com/search?hl=en&q=allinurl%3Aexception+java.sun.com&btnI=I%27m Feeling Lucky
http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/com/nokia/notifications/NotificationSessionListener.html#stateChanged(com.nokia.notifications.NotificationState)
http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/com/nokia/notifications/NotificationState.html#STATE_OFFLINE
http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/com/nokia/notifications/NotificationState.html#STATE_CONNECTING
http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/com/nokia/notifications/NotificationState.html#STATE_ONLINE
http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/com/nokia/notifications/NotificationSessionListener.html#infoReceived(com.nokia.notifications.NotificationInfo)
http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/com/nokia/notifications/NotificationSessionListener.html#messageReceived(com.nokia.notifications.NotificationMessage)
http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/com/nokia/notifications/NotificationSession.html#registerApplication()

}

catch(NotificationException e)

{

 // handle the raised exception

}

The registerApplication is an asynchronous method, that means that it immediately returns, and its actual result is
asynchronously handled by the NotificationSessionListener instance defined in the previous section.

Specifically, after the registerApplication() call, the stateChanged method is called to notify about the registering process,

and to inform the app if it has been correctly registered (with an NotificationState.STATE_ONLINE value) or if any error occurred
during the registration process.

public void stateChanged(NotificationState state)

{

 switch(state.getSessionState())

 {

 case NotificationState.STATE_CONNECTING:

 // Java app is trying to connect to the Notification Enabler to enable notifications

 break;

 case NotificationState.STATE_OFFLINE:

 // Java app is offline and will not receive notifications

 break;

 case NotificationState.STATE_ONLINE:

 // Java app is online and enabled to receive notifications

 break;

 }

 int error = state.getSessionError();

 if(error != NotificationError.ERROR_NONE)

 {

 // handle the received error

 }

}

Note: Error handling is particularly important, since it allows the Java app to notify the user about the notification state, and

eventually retry to register the app with the Notification Enabler.

Error checking can be performed by using the NotificationState.getSessionError method.

The Notification ID
After the Java app has been correctly registered, it is necessary to retrieve the Notification ID: that is "the unique identifier" needed
by the remote server to send notifications to that specific Java app on that specific device.

Retrieving the Notification ID
The Java app can request the notification information by using the NotificationSession.getNotificationInformation() method.

try

{

 session.getNotificationInformation();

}

catch(NotificationException e)

{

 // handle the raised exception

Page 4 of 9
Printed on 2014-03-12

http://developer.nokia.com/community/wiki/Nokia_notifications_on_the_Asha_software_platform (C) Copyright Nokia 2014. All rights reserved.

http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/com/nokia/notifications/NotificationSession.html#registerApplication()
http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/com/nokia/notifications/NotificationSessionListener.html#stateChanged(com.nokia.notifications.NotificationState)
http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/com/nokia/notifications/NotificationState.html#STATE_ONLINE
http://developer.nokia.com/community/wiki/Template:Note
http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/com/nokia/notifications/NotificationState.html#getSessionError()
http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/com/nokia/notifications/NotificationSession.html#getNotificationInformation()

}

Being an operation that requires network connectivity, this method is executed asynchronously and the result, once it is available,
is passed as a NotificationInfo object to the NotificationSessionListener.infoReceived .

By using the NotificationInfo.getNotificationId method, it's then possible to retrieve the Notification ID.

public void infoReceived(NotificationInfo info)

{

 String notificationId = info.getNotificationId();

 if(notificationId.length() == 0)

 {

 // manage the case where an empty Notification ID is received

 }

 else

 {

 // manage the Notification ID, typically by storing it in persistent storage (e.g.

RMS) and sending it to the notification remote server

 }

}

Note: The Java app should always check if the returned Notification ID is an empty string: this case means that a network

timeout occurred, and so the app must behave accordingly.

The following picture shows a screenshot of the sample app attached to this article, with the app displaying the
NotificationSession state and the received Notification ID.

Test app displaying message

Sending the Notification ID to the remote server
Once retrieved, the Notification ID must be passed to the remote server that will be responsible for storing and then use that
identifier to send notifications to that specific app instance.

Typically, this operation is performed by communicating with a Web server via an HTTP request, and this implies using, for
instance, an HttpConnection or a SocketConnection object. Since implementing network connectivity logic is beyond the
purpose of this article, its code is not illustrated here: anyway a fully functional sample is available in the attached source code
ZIP file.

Page 5 of 9
Printed on 2014-03-12

http://developer.nokia.com/community/wiki/Nokia_notifications_on_the_Asha_software_platform (C) Copyright Nokia 2014. All rights reserved.

http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/com/nokia/notifications/NotificationInfo.html
http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/com/nokia/notifications/NotificationSessionListener.html#infoReceived(com.nokia.notifications.NotificationInfo)
http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/com/nokia/notifications/NotificationInfo.html#getNotificationId()
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m Feeling Lucky
http://developer.nokia.com/community/wiki/Template:Note
http://developer.nokia.com/community/wiki/File:Nokiawiki_asha_notifications_notificationid.png
http://developer.nokia.com/community/wiki/File:Nokiawiki_asha_notifications_notificationid.png
http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-0D0A1092-5037-4421-B466-B958CB777414/javax/microedition/io/HttpConnection.html
http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-0D0A1092-5037-4421-B466-B958CB777414/javax/microedition/io/SocketConnection.html

Handling incoming notifications
The previous sections explained how to enable notifications, and how to uniquely identify an app on a specific device to allow a
remote server to send notifications to that specific instance.

What the Java app now must implement is the actual handling of incoming notifications. This operation is performed by
implementing the messageReceived method of the NotificationSessionListener interface. The NotificationMessage

instance, passed as argument to that method, can be used to retrieve all the notification information, including its title and payload.

Implementing the notification server
The Nokia Notification Server offers a Nokia Notifications Service API that allows to send notifications to Java apps. The Service
API is a REST API, so allows interactions based on HTTP requests.

In order to send a notification to an app instance, a remote server sends an HTTP POST request to the Nokia Notifications Server
endpoint https://alpha.one.ovi.com/nnapi/1.0/nid/ <NOTIFICATION_ID>/, specifying the notification data (such as its content) in
the request POST parameters.

The Nokia Notifications Server then sends back an HTTP response specifying if the notification was correctly sent (or queued for
sending) or if any error occurred.

The HTTP requests must use SSL, together with Digest Access authentication. Depending on the programming language of
choice, there are different SDKs and libraries that support such features.

The following code snippet shows a sample function that can be used to send a notification request to the Nokia Notifications
Server by using the PHP programming language and curl . The function takes four parameters (service ID, service secret,
notification ID and the notification message) and returns a boolean value indicating if the notification was correctly sent.

function sendNotification($serviceId, $serviceSecret, $notificationId, $message)

{

 // the alpha.one.ovi.com host must be used for testing in the sandbox environment

 $url = "https://alpha.one.ovi.com/nnapi/1.0/nid/" . urlencode($notificationId) . "/";

 // format the POST parameters

 $args = 'payload=' . urlencode($message) .

 '&ctype='.urlencode("text/plain");

 // initialize the curl session

 $session = curl_init($url);

 // set HTTP POST method

 curl_setopt ($session, CURLOPT_POST, true);

 // set the POST parameters

 curl_setopt ($session, CURLOPT_POSTFIELDS, $args);

 // return the HTTP request's response as a string instead of outputting it directly

 curl_setopt($session, CURLOPT_RETURNTRANSFER, true);

 // set the authentication method as requested by the Nokia Notification Server

 curl_setopt($session, CURLOPT_HTTPAUTH, CURLAUTH_DIGEST);

 // set the authentication data: service ID and service secret

 curl_setopt($session, CURLOPT_USERPWD, $serviceId . ':' . $serviceSecret);

 // execute the HTTP request

 $output = curl_exec($session);

Page 6 of 9
Printed on 2014-03-12

http://developer.nokia.com/community/wiki/Nokia_notifications_on_the_Asha_software_platform (C) Copyright Nokia 2014. All rights reserved.

http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/com/nokia/notifications/NotificationSessionListener.html#messageReceived(com.nokia.notifications.NotificationMessage)
http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/com/nokia/notifications/NotificationMessage.html
https://alpha.one.ovi.com/nnapi/1.0/nid/
http://php.net/manual/en/book.curl.php
http://www.php.net/urlencode
http://www.php.net/urlencode
http://www.php.net/urlencode
http://www.php.net/curl_init
http://www.php.net/curl_setopt
http://www.php.net/curl_setopt
http://www.php.net/curl_setopt
http://www.php.net/curl_setopt
http://www.php.net/curl_setopt
http://www.php.net/curl_exec

 // get the response HTTP code

 $responseCode = curl_getinfo($session, CURLINFO_HTTP_CODE);

 curl_close($session);

 $success = ($responseCode == 201);

 return $success;

}

Note: The above function does not take into account important aspects that should be considered when deploying a solution

in a production environment. Those aspects include:

proper error management: it is important to check which error the Nokia Notifications Server sends back, in order to take the
appropriate action (for instance, retry to send the notification, or remove the Notification ID for the successive notifications)

performances: in real-world cases, it is often important how quickly a notification is sent and arrives to its receiver. The
implementation of a notification system must take into account scalability, to be able to maintain good performances with
increasing number of users.

Further considerations

Deactivating notifications
An app should always allow the user to deactivate notifications, once he/she doesn't desire those anymore. This can be done by
using the NotificationSession.unregisterApplication method. As registerApplication, this is an asynchronous method, so it's

necessary to use the NotificationSessionListener.stateChanged method to check its result.

When an user deactivates notification, unregistering the application, it is good practice to notify the remote server about this
change, so that the server doesn't try to send further notifications to the user. Even if he/she wouldn't receive any more
notifications, this step ensures that server resources are used in an optimal way, without wasting HTTP requests and bandwidth.

Delivery of notifications
Notifications are delivered when both the following conditions are met:

the device has working network connectivity

notifications for the Java app are enabled (notifications for each app can be enabled and disabled by the user within the
device's settings screen, as shown by the following picture).

Push Notifications settings
screen

If one of those conditions are not fulfilled, then the notifications are stored by the Nokia Notification Server, taking into account the
following considerations.

Only the last five notifications for a specific Notification ID are stored. When more notifications need to be stored, the oldest are
removed and not delivered.

Page 7 of 9
Printed on 2014-03-12

http://developer.nokia.com/community/wiki/Nokia_notifications_on_the_Asha_software_platform (C) Copyright Nokia 2014. All rights reserved.

http://www.php.net/curl_getinfo
http://www.php.net/curl_close
http://developer.nokia.com/community/wiki/Template:Note
http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/com/nokia/notifications/NotificationSession.html#unregisterApplication()
http://www.developer.nokia.com/Resources/Library/Java/_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/com/nokia/notifications/NotificationSessionListener.html#stateChanged(com.nokia.notifications.NotificationState)
http://developer.nokia.com/community/wiki/File:Nokiawiki_asha_notifications_settings.png
http://developer.nokia.com/community/wiki/File:Nokiawiki_asha_notifications_settings.png

Notifications have a maximum expiration time of 14 days. After this time a notification is removed and not delivered.

Each notification service has an hourly quota of notifications that can be sent. Over this quota no more notifications are
delivered for the hourly period, and a 503 error is returned to Service API calls. The quota increases with the number of
enabled Notification IDs.

Testing and production environments
The Nokia Notification Server allows to choose between sandbox and production environments. In order to properly setup and
delivery notifications, both the Java app and the remote server must use the same environment.

the Java app can be set to use the appropriate environment by using the Environment Selector MIDlet

the remote server can select an environment by using the appropriate host:

alpha.one.ovi.com for the sandbox environment

nnapi.ovi.com for the production environment

nnapi.ovi.com.cn for the Chinese production environment

Filtering notifications
An user could desire to receive only notifications related to a specific topic or event. In this case, the topic/event identifiers must be
associated with the Notification ID, so that the remote server is able to filter out the proper notifications for each user.

Notification system performances
As already stated, performances become an important matter with the increase of the number of app users. An effective solution
can be represented by cloud servers, that allow to manage resources depending on the requests volume. Cloud solutions include:

Windows Azure

Amazon AWS

Google App Engine

Sending notifications from the Developer Console
The Nokia Notifications API Developer Console offers a dedicated tool to test the delivery of Nokia notifications without the
need to use a separate remote server. By using this tool, it's possible to send notifications with the desired payloads and
parameters to the specified Notification ID.

Nokia Notifications API Developer Console

Summary
This article went through the main steps in implementing and integrating Nokia notifications in a Java app. More information is
available on both the Nokia notifications developer's guide and the Nokia Notifications API JavaDocs pages .

The source code of the sample Java app illustrated in this article is available here: Media:WikiAshaNotifications.zip

Page 8 of 9
Printed on 2014-03-12

http://developer.nokia.com/community/wiki/Nokia_notifications_on_the_Asha_software_platform (C) Copyright Nokia 2014. All rights reserved.

http://www.developer.nokia.com/Resources/Library/Java/NNAClientExample.zip
http://windowazure.com/
https://aws.amazon.com
https://appengine.google.com/
https://account.nnapi.ovi.com/cm/Web/services.jsp
http://developer.nokia.com/community/wiki/File:Nokiawiki_asha_notifications_devconsole_test.png
http://www.developer.nokia.com/Resources/Library/Java/#!developers-guides/nokia-notifications.html
http://www.developer.nokia.com/Resources/Library/Java/#!_zip/GUID-DD8C8B04-723A-4E93-8DB0-BFD15F555EA1/overview-summary.html
http://developer.nokia.com/community/wiki/images/f/f8/WikiAshaNotifications.zip?20130612154639

Page 9 of 9
Printed on 2014-03-12

http://developer.nokia.com/community/wiki/Nokia_notifications_on_the_Asha_software_platform (C) Copyright Nokia 2014. All rights reserved.

	Nokia notifications on the Asha software platform
	Introduction
	Notification system overview
	Registering the notification service
	Implementing Nokia notifications in a Java app
	Enabling Nokia notifications
	Opening a notification session
	Registering the app to receive notifications

	The Notification ID
	Retrieving the Notification ID
	Sending the Notification ID to the remote server

	Handling incoming notifications

	Implementing the notification server
	Further considerations
	Deactivating notifications
	Delivery of notifications
	Testing and production environments
	Filtering notifications
	Notification system performances
	Sending notifications from the Developer Console

	Summary

