
Porting Android (Java) applications to Java ME on S60 5th
Edition
Introduction
Android is a platform for mobile devices maintained by Google and supported by the Open Handset Alliance.

The Android platform includes an application framework, an operating system, a Java Virtual Machine called Dalvik, a web
browser based on WebKit, SQLite database, middleware services and key applications.

The Android SDK provides the tools and APIs necessary to begin developing applications on the Android platform using the Java
programming language. However, the Java APIs supported by Android are not standard Java ME APIs (JSRs), so in order to
develop an Android application the developer must learn and cope with many new APIs.

Android is built on the Linux Kernel and utilizes a custom virtual machine, commonly referred as Dalvik VM. Although the
Android's kernel is based on Linux, developers can only use Java programming syntax to develop Android applications.

Java Micro Edition applications are not compatible with Android due to the new format of byte codes used by Dalvik virtual
machine and due to this fact developers must rewrite Android applications to work on S60 5th Edition devices or any other
devices supporting standard Java ME.

This article provides an overview of Android in an extent that will allow you to port Android applications to S60 5th Edition,
focusing on Java ME.

Android platform - Architecture
Android architecture is basically divided into several components: Application Framework, Libraries, Android Runtime and Linux

Page 1 of 6
Printed on 2014-07-31

http://developer.nokia.com/community/wiki/Porting_Android_(Java)_applications_to_Java_ME_on_S60_5th_Edition (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/Porting_Android_(Java)_applications_to_Java_ME_on_S60_5th_Edition
http://developer.nokia.com/community/wiki/File:Phoneimage.jpg
http://developer.nokia.com/community/wiki/File:Nokia.jpg

Kernel.

As mentioned before, Android has virtual machine called Dalvik and every Android application will run on its own process, that is,
using its own instance of Dalvik JVM.

The Dalvik JVM runs files called Dalvik executables (.dex files), a kind of Java byte code optimized for the Android platform. The
Linux Kernel is based on version 2.6.

At last, Android code can use the 1.5 version of Java language (Tiger), so the Java Tiger features are available for Android. It
means you can use Generics, enhanced for loop, auto boxing e other new features of language when developing Android
software.

Java RT for S60 has two newer versions, called JRT 1.3 (S60 5th Edition) and JRT 1.4 (S60 3rd Edition FP2). So, on the contrary,
when porting Android code to S60 Java, in case you come across Java Tiger code, you will need to convert them back to Java 2
language, as both JRT 1.3 and 1.4 do not support Java Tiger.

For more information about JRT, please check this article Archived:Naming and versioning of Java Runtime for Symbian

Application Development

Application Components
The main components of an Android application are: Activity, IntentReceiver, Service and ContentProvider. Depending on the

kind of application one might be developing, not all components will be present in an application. In short, they are defined as
below:

An Activity has the main callback methods and is linked (represents) a blank screen in a logical way (an application may have
several Activity classes);

An Intent represents an action and it is composed by <action> and <category> XML elements. Then the IntentReceiver and
IntentFilter (<intent-filter> element) will take care of its action processing and guarantee that the right Intent will be processed;

AndroidManifest.xml - the components above are controlled by means of the AndroidManifest.xml configuration file, which is a
kind of descriptor for the Android application.

User Interfaces
The main components are the android.view.View and android.view.ViewGroup.

The View represents a graphical area on the device's screen and by means of it you can find out the width and height, set
focus, control scrolling and key handling for the correspondent area. It is very extensible and several Android Widgets extend
from View.

Some examples of Widgets are AbsListView, AbsSeekBar, AbsSpinner, AppWidgetHostView, AutoCompleteTextView,
Button, CheckBox, CheckedTextView, Chronometer, CompoundButton, DatePicker, DialerFilter, DigitalClock, EditText,
ExpandableListView, ExtractEditText, FrameLayout, GLSurfaceView, Gallery, GridView, HorizontalScrollView,
ImageButton, ImageSwitcher, LinearLayout, ListView, MediaController, MultiAutoCompleteTextView, RadioButton,
RadioGroup, RatingBar, RelativeLayout, ScrollView, SeekBar, SlidingDrawer, Spinner, TabHost, TabWidget,
TableLayout, TableRow, TextSwitcher, TimePicker, ToggleButton, TwoLineListItem, VideoView, ViewAnimator,
ViewFlipper, ViewSwitcher, WebView, ZoomButton and ZoomControls.

Page 2 of 6
Printed on 2014-07-31

http://developer.nokia.com/community/wiki/Porting_Android_(Java)_applications_to_Java_ME_on_S60_5th_Edition (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/Archived:Naming_and_versioning_of_Java_Runtime_for_Symbian
http://developer.nokia.com/community/wiki/File:Android-architecture-485b.jpg

The ViewGroup is a container of View, that is, it is a container class and helps defining the layout characteristics of your GUI.

Some examples of layouts are AbsoluteLayout, FrameLayout, LinearLayout and RelativeLayout.

Project Structure
XML files play a major role in android application development, mainly regarding configuration and declaration of resources. But
standard Java ME does not use the same approach, so the mapping that is done using the AndroidManifest.xml (events
mapping to actions) do not exist in Java ME by default. You will need to analyze the Android manifest and implement the logical
mapping on your S60 Java ME application using well known patterns like MVC, Command, Dispatcher and others.

Just as an example, when developing an Android application, in order to create the GUI, navigation mapping and action linkage
generally the developer uses some XML files and refer each component using its ID. In standard Java ME as available in S60
devices, there is no such mapping imposed by the platform so one should refer each component by name and instance reference,
using its source file (class definition) itself.

Below we have a very basic project structure regarding an Android project:

In summary:

The src folder is where your all the classes created explicitly by the developer will be located. You can see a basic Activity
class in this folder, inside the com.forum.nokia.android.to.s60 package;

The gen folder has several classes that are created automatically by Android and should never be edited manually by the
developer;

The android.jar that is included on the classpath and has the Android framework;

The res folder that contains all the resources used by the application, such as images (drawable subfolder has icon.png file),
layouts (layout subfolder has the main.xml file, defining the layout for GUIs), static values, kind of resource bundle (values
subfolder has the string.xml file where declarative values will be declared);

AndroidManifest.xml - as cited before, it is the main configuration file for the Android application.

Porting Guidelines

AndroidStandardActivity.java

Page 3 of 6
Printed on 2014-07-31

http://developer.nokia.com/community/wiki/Porting_Android_(Java)_applications_to_Java_ME_on_S60_5th_Edition (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/File:Android-gui.jpg
http://developer.nokia.com/community/wiki/File:Android-project-fn-2.jpg

Below we have the code for a simple Activity. Note that it overrides and implements the public void onCreate(Bundle
savedInstanceState) method. This method must be overridden to allow an activity to be created.

In some way it can be compared to MIDlet's startApp() method, so while there is no direct matching of methods between Android
and standard Java ME given that approaches and strategies are very different, when porting your application you will convert the
main Activity (main screen) to your MIDlet's startApp() and then convert the other activities to classes that will implement the
functionality on your Java ME application.

Depending on the coding style, architecture or convention you or your company use, you can convert them to:

Java class that implements the Runnable interface (separate thread);

Java class that extends Form or Canvas;

Java class that extends Object but has several business methods (Business Object design pattern).

So, the takeaway here is that while Android works with several separate Activity classes, each having its own callback methods
and others, your Java ME will have only one (or maybe more if preferred) MIDlet classes and the remaining Activity classes will
be converted to one of the examples cited above (Thread, Canvas, Form or BO).

package com.forum.nokia.android.to.s60;

import android.app.Activity;

import android.os.Bundle;

public class AndroidStandardActivity extends Activity {

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 }

}

R.java
The is no need to replicate the class below to standard Java ME application as it is proprietary to Android and Java ME does not
consider the same approach. So you can ignore it, but it can help you figure out the correspondence that exists among layouts,
strings and other resources in an Android application.

/* AUTO-GENERATED FILE. DO NOT MODIFY.

 *

 * This class was automatically generated by the

 * aapt tool from the resource data it found. It

 * should not be modified by hand.

 */

package com.forum.nokia.android.to.s60;

public final class R {

 public static final class attr {

 }

 public static final class drawable {

 public static final int icon=0x7f020000;

 }

 public static final class layout {

 public static final int main=0x7f030000;

 }

 public static final class string {

Page 4 of 6
Printed on 2014-07-31

http://developer.nokia.com/community/wiki/Porting_Android_(Java)_applications_to_Java_ME_on_S60_5th_Edition (C) Copyright Nokia 2014. All rights reserved.

 public static final int app_name=0x7f040001;

 public static final int hello=0x7f040000;

 }

}

strings.xml
This file may be converted to standalone resource file (simple .txt file, for example, kind of resource bundle), JSR-238 file (MIA) or
into entries on JAD file to hold your literal, constant values, avoiding some hardcoded values on your source code.

So there is no need to port this file, just create a similar one in S60 Java ME application to achieve the same purposes.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="hello">Hello World, AndroidStandardActivity!</string>

 <string name="app_name">AndroidToS60Porting</string>

</resources>

main.xml
This file expresses the layout being used by the Android application, regarding its GUI.

In Java ME, you can control it using the new layout features that are available in frameworks like LWUIT, eSWT or even the
limited support that is available in MIDP. So there is no need to port this file or create a similar one in S60 Java ME application.

To achieve the same layout organization, it is advisable to read and understand the layout classes that are available in Android,
cited above in one of the previous sections of this article.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 >

<TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/hello"

 />

</LinearLayout>

Java APIs (packages) - Android and Java ME
To get the detailed description about each class you can refer the Javadoc documentation that is available in both platforms.

S60 5th Edition - Java ME

Android

Deployment Packages
Nokia - JAD, JAR files

Android - APK files

Application Signing
Nokia supports: VeriSign, Thawte, Java Verifed (UTI) certificates

Android supports: VeriSign, Thawte, self-issued certificates (using tools like keytool)

Page 5 of 6
Printed on 2014-07-31

http://developer.nokia.com/community/wiki/Porting_Android_(Java)_applications_to_Java_ME_on_S60_5th_Edition (C) Copyright Nokia 2014. All rights reserved.

http://library.developer.nokia.com/topic/Java_Developers_Library/GUID-660EC670-B7DB-4005-BF2D-411E5C0B3867_overview-d0e56352.html
http://developer.android.com/reference/packages.html

Tools - SDKs and IDEs
Wireless tool kit(WTK)

Nokia S60 SDK

NetBeans

Eclipse

Restricted APIs (permissions)
On Android the developer needs to set permissions in the AndroidManifest.xml file to allow the access to some restricted APIs or
resources. Android applications must also be signed with a certificate whose private key is held by their developer, but it can use
a self-issued certificate.

Regarding Java ME, if application is not signed then the application will ask the permission to user while executing it and by
signing it will be granted automatically, so there is no need to get explicit permission confirmation for most of the resources and
restricted API calls.

Data Storage
J2ME : RMS, FileConnection

Android : Preferences, Files, Databases, Network storage and SQLite database

Page 6 of 6
Printed on 2014-07-31

http://developer.nokia.com/community/wiki/Porting_Android_(Java)_applications_to_Java_ME_on_S60_5th_Edition (C) Copyright Nokia 2014. All rights reserved.

http://www.oracle.com/technetwork/java/javame/downloads/index.html
http://www.developer.nokia.com/info/sw.nokia.com/id/ec866fab-4b76-49f6-b5a5-af0631419e9c/S60_All_in_One_SDKs.html
http://netbeans.org/
http://www.eclipse.org/

	Porting Android (Java) applications to Java ME on S60 5th Edition
	Introduction
	Android platform - Architecture

	Application Development
	Application Components
	User Interfaces
	Project Structure

	Porting Guidelines
	AndroidStandardActivity.java
	R.java
	strings.xml
	main.xml
	Java APIs (packages) - Android and Java ME
	Deployment Packages
	Application Signing
	Tools - SDKs and IDEs

	Restricted APIs (permissions)
	Data Storage

