
Techniques for memory analysis of Windows Phone apps

18 Mar
2012

This article provides an overview of the techniques available for analysing the memory use of Windows Phone apps.

Windows Phone Memory Profiler
Run the Windows Phone Memory Profiler to get a time-axis graph of application memory consumption, a breakdown of
important events (garbage collection, image creation, etc.), and get automated analysis of your application's memory use. The
profiler is included in the Windows Phone SDK 7.1 and is available for use with all versions of Visual Studio.

The following section describes a simple test app that we can use to allocate and deallocate memory during profiling, followed by
a section showing how the Memory profiler is used.

Sample app for testing memory analysis
To demonstrate how the profiler works we first create a sample Windows Phone 7 app that allocates and deallocates 5MB of
memory at a time. This sample application is used throughout the article to demonstrate the different memory analysis techniques.

Sample app for testing memory analysis screenshot

Create a new Windows Phone 7.5 project after installing the Windows Phone SDK 7.1.1. Open up MainPage.xaml and replace
existing “ContentPanel” with a stackpanel and 2 buttons.

<!--ContentPanel - place additional content here-->

<StackPanel x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <Button Content="Add 5MB" Click="Add_Click" />

 <Button Content="Remove 5MB" Click="Remove_Click" />

</StackPanel>

Page 1 of 8
Printed on 2014-04-19

http://developer.nokia.com/community/wiki/Techniques_for_memory_analysis_of_Windows_Phone_apps (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/Techniques_for_memory_analysis_of_Windows_Phone_apps
http://developer.nokia.com/community/wiki/Template:FeaturedArticle
http://developer.nokia.com/community/wiki/Portal:Windows_Phone_Testing_%26_Debugging
http://developer.nokia.com/community/wiki/Portal:Windows_Phone_Tools_%26_SDK
http://developer.nokia.com/community/wiki/Category:Optimization_on_Windows_Phone
http://developer.nokia.com/community/wiki/Category:XAML
http://developer.nokia.com/community/wiki/Category:XNA
http://developer.nokia.com/community/wiki/Category:Windows_Phone_7.5
http://developer.nokia.com/community/wiki/File:Windows_Phone_Memory_Profiler_screenshot.png
http://developer.nokia.com/community/wiki/File:WindowsPhoneMemoryTextExample2.png

Next, implement the event handlers in MainPage.xaml.cs to allocate and deallocate 5MB of memory.

List<Byte[]> inMemoryCache = new List<byte[]>();

private void Add_Click(object sender, RoutedEventArgs e)

{

 inMemoryCache.Add(new Byte[1024 * 1024 * 5]);

}

private void Remove_Click(object sender, RoutedEventArgs e)

{

 if (inMemoryCache.Count > 0)

 inMemoryCache.RemoveAt(inMemoryCache.Count - 1);

 GC.Collect();

}

Profiling
In order to start memory profiling:

1. Open the top Debug menu item and choose Start Windows Phone Performance Analysis.

Make sure to select "Memory" instead of "Execution" profiling and launch the application.

2. Once the app is running click the Add 5MB button a few times

3. Then select Stop Profiling

You can see the app’s memory allocation graph and markers for when garbage collection took place. Select the time span you’re
interested in and select Start Analysis.

Page 2 of 8
Printed on 2014-04-19

http://developer.nokia.com/community/wiki/Techniques_for_memory_analysis_of_Windows_Phone_apps (C) Copyright Nokia 2014. All rights reserved.

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://developer.nokia.com/community/wiki/File:WindowsPhoneStartWindowsPhonePerformanceAnalysis.png
http://developer.nokia.com/community/wiki/File:WindowsPhoneStartWindowsPhonePerformanceAnalysisMemoryNotExecution.png

Memory allocation graph

The analysis of the selected time span shows that too many Byte[] have been allocated. We can also examine the Heap

Summary as was suggested and see a summary of the Silverlight/CLR memory allocation state.

We can even drill all the way down to see how many Byte[] were allocated during this time and their total allocated size %.

You can also use Windows Phone 7 Performance Analysis for CPU profiling. For more information see How to: Capture and
Analyze Performance Data Using Windows Phone Performance Analysis (MSDN).

Add on-screen coding4fun <MemoryCounter />
Use the <MemoryCounter /> control in the Microsoft coding4fun Windows Phone Toolkit to display the current memory use and

peak memory while developing your app.

Start by adding the Coding4fun assembly to the project. The coding4fun website has instructions on how to add the correct

DLLs to your project either by adding references or by using NuGet.

After adding the Coding4Fun.Phone.Controls assembly reference to your project (and unblocking it if needed) you can now add a

<MemoryCounter /> to your page.

Page 3 of 8
Printed on 2014-04-19

http://developer.nokia.com/community/wiki/Techniques_for_memory_analysis_of_Windows_Phone_apps (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/File:Windows_Phone_Memory_Profiler_screenshot.png
http://developer.nokia.com/community/wiki/File:WindowsPhoneMemoryProfilerAnalysis.png
http://developer.nokia.com/community/wiki/File:WindowsPhoneMemoryProfilerAnalysisDrilldown.png
http://msdn.microsoft.com/en-us/library/hh202935(VS.92).aspx
http://coding4fun.codeplex.com/
http://coding4fun.codeplex.com/
http://developer.nokia.com/community/wiki/File:WindowsPhoneCodingForFunPhoneControls.png

<!--ContentPanel - place additional content here-->

<StackPanel x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <Button Content="Add 5MB" Click="Add_Click" />

 <Button Content="Remove 5MB" Click="Remove_Click" />

</StackPanel>

<coding4fun:MemoryCounter

 xmlns:coding4fun="clr-

namespace:Coding4Fun.Phone.Controls;assembly=Coding4Fun.Phone.Controls"/>

The screenshots below show the above code running in our sample test app. Note how the total and peak memory changes when
the users clicks the Add 5mb and Remove 5mb buttons.

Adding 5MB

Adding 5MB

Removing 5MB

Note: Passing WP7 Memory Consumption requirements with the Coding4Fun MemoryCounter tool

(WindowsPhoneGeek) fully explains <MemoryCounter />. The sample code above is actually an adaptation from the sample code

in that article.

Create your own memory profiler
Windows Phone provides low level reporting properties that you can use to create your own "pseudo" memory profiler. This might
be useful if you want to get memory profiling logs from consumer devices.

Warning: Be careful when deploying your own memory profiler. Excessive sampling of memory conditions might itself

impact memory and CPU performance adversely.

The DeviceStatus class has four of the properties needed:

namespace Microsoft.Phone.Info

{

 public static class DeviceStatus

 {

 public static long ApplicationCurrentMemoryUsage { get; }

 public static long ApplicationPeakMemoryUsage { get; }

 public static long ApplicationMemoryUsageLimit { get; }

Page 4 of 8
Printed on 2014-04-19

http://developer.nokia.com/community/wiki/Techniques_for_memory_analysis_of_Windows_Phone_apps (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/File:WindowsPhoneMemoryTextExample1.png
http://developer.nokia.com/community/wiki/File:WindowsPhoneMemoryTextExample2.png
http://developer.nokia.com/community/wiki/File:WindowsPhoneMemoryTextExample3.png
http://developer.nokia.com/community/wiki/Template:Note
http://windowsphonegeek.com/articles/Passing-WP7-Memory-Consumption-requirements-with-the-Coding4Fun-MemoryCounter-tool
http://developer.nokia.com/community/wiki/Template:Warning

 public static long DeviceTotalMemory { get; }

 }

}

In addition, in the Windows Phone 7.5 upgrade you can call
DeviceExtendedProperties.GetValue("ApplicationWorkingSetLimit") to get the memory working set limit for the current device.

Warning: Note that if the Windows Phone 7.5 update isn't installed then the GetValue() invocation will throw an exception.

An example pseudo memory profiler is given below. This creates an asynchronous timer that records memory conditions and
writes them to a report in an IsoStore every 2 seconds. In an ideal world the example would write the report in IsoStore to a web

service next time the app restarts - for the sake of brevity this code is omitted.

public static class LowMemoryHelper

{

 private static Timer timer = null;

 public static void BeginRecording()

 {

 // before we start recording we can clean up the previous session.

 // e.g. Get a logging file from IsoStore and upload to the server

 // start a timer to report memory conditions every 2 seconds

 timer = new Timer(state =>

 {

 // every 2 seconds do something

 string report =

 DateTime.Now.ToLongTimeString() + " memory conditions: " +

 Environment.NewLine +

 "\tApplicationCurrentMemoryUsage: " +

 DeviceStatus.ApplicationCurrentMemoryUsage +

 Environment.NewLine +

 "\tApplicationPeakMemoryUsage: " +

 DeviceStatus.ApplicationPeakMemoryUsage +

 Environment.NewLine +

 "\tApplicationMemoryUsageLimit: " +

 DeviceStatus.ApplicationMemoryUsageLimit +

 Environment.NewLine +

 "\tDeviceTotalMemory: " + DeviceStatus.DeviceTotalMemory +

Environment.NewLine +

 "\tApplicationWorkingSetLimit: " +

 DeviceExtendedProperties.GetValue("ApplicationWorkingSetLimit")

+

 Environment.NewLine;

 // write to IsoStore or debug conolse

 Debug.WriteLine(report);

 },

 null,

 TimeSpan.FromSeconds(2),

 TimeSpan.FromSeconds(2));

 }

}

// Code to execute when the application is launching (eg, from Start)

// This code will not execute when the application is reactivated

Page 5 of 8
Printed on 2014-04-19

http://developer.nokia.com/community/wiki/Techniques_for_memory_analysis_of_Windows_Phone_apps (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/Template:Warning
http://www.google.com/search?q=new+msdn.microsoft.com

private void Application_Launching(object sender, LaunchingEventArgs e)

 {

 LowMemoryHelper.BeginRecording();

 }

The output of the sample test app after a user as selected the Add 5MB button a few times is shown below. We can see that the
memory conditions debug output reflects those changes.

Example output from "home grown" memory profiler

Note: The coding4fun <MemoryCounter /> described in the preceding section is just a "pseudo" memory profiler, like the one

described here. The full source code implementation for <MemoryCounter /> is at

http://coding4fun.codeplex.com/SourceControl/changeset/view/72318#1113297

Run the Windows Phone Marketplace Test Kit
The Windows Phone SDK 7.1's Windows Phone Marketplace Test Kit includes a Peak Memory Consumption test which
monitors whether the total peak memory for an app is under 90 MB. While we highly recommend running the Marketplace Test Kit
on your app prior to marketplace submission, the tests are also useful during earlier stages of development.

To run the tests:

Right click on your project in Solution Explorer and choose Open Marketplace Test Kit.

Under Monitored Tests you'll see the Peak Memory Consumption test.

Click Start Application to run the test

Test all app functionality

Click Close Application to complete the test.

Page 6 of 8
Printed on 2014-04-19

http://developer.nokia.com/community/wiki/Techniques_for_memory_analysis_of_Windows_Phone_apps (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/File:WindowsPhoneMemoryProfileHomeGrownExample.png
http://developer.nokia.com/community/wiki/Template:Note
http://coding4fun.codeplex.com/SourceControl/changeset/view/72318#1113297
http://msdn.microsoft.com/en-us/library/hh394032(v=vs.92).aspx

Screenshot of the Peak Memory Consumption test

If your application uses more than 90MB at any point a test failure will be reported, as shown in the screenshot below.

Screenshot of a peak memory consumption test failure

For more information on the Marketplace Test Kit and memory testing see Get Your Windows Phone Applications in the
Marketplace Faster (Cheryl Simmons) and Windows Phone Marketplace Test Kit (MSDN).

Check the AppHub crash reports
Whenever a deployed app crashes on a consumer device, a crash report is sent back to AppHub. An OutOfMemoryException in an

AppHub crash report indicates that your app has a memory problem that should be fixed.

You can inspect crash reports for your apps through your AppHub account, filtering reports to only display crashes in a specific
date range. The reports include information about what exceptions have occurred, and in what functions, along with a stack trace
of the function calls that lead up to them. As an example, the screenshot below shows a real report for an OutOfMemoryException

that occurred 18 times in the field along with the associated stack trace.

Page 7 of 8
Printed on 2014-04-19

http://developer.nokia.com/community/wiki/Techniques_for_memory_analysis_of_Windows_Phone_apps (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/File:WindowsPhoneMarketplaceTestKit.png
http://developer.nokia.com/community/wiki/File:Windows_Phone_Marketplace_Test_Kit_Peak_Memeory_Consumption.png
http://msdn.microsoft.com/en-us/magazine/hh781024.aspx
http://msdn.microsoft.com/en-us/magazine/hh781024.aspx

Crash report courtesy Morten Nielsen .

Tip: Don't rely on AppHub crash reports as a way to validate your apps for 256 MB devices! Firstly, it is much better to detect

errors before your users have a bad experience, and secondly there is no guarantee that the AppHub will detect all
OutOfMemoryExceptions.

However if you see errors, they are indicative that more work is needed!

Page 8 of 8
Printed on 2014-04-19

http://developer.nokia.com/community/wiki/Techniques_for_memory_analysis_of_Windows_Phone_apps (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/File:Windows_Phone_AppHub_crash_report.png
http://www.sharpgis.net/
http://developer.nokia.com/community/wiki/Template:Tip

	Techniques for memory analysis of Windows Phone apps
	Windows Phone Memory Profiler
	Sample app for testing memory analysis
	Profiling

	Add on-screen coding4fun <MemoryCounter />
	Create your own memory profiler
	Run the Windows Phone Marketplace Test Kit
	Check the AppHub crash reports

