Page 1 of 6

NOKLA DE’VE'OPEI’ Printed on 2014-03-09
Using valgrind with Qt Creator
This article will show you how you can use valgrind on Linux to find memory leaks in your Qt based application from o
within Qt Creator.
07 Nov
valgrind & is a low level tool that can do many useful memory-related things, of which we will focus on locating memory 2010

leaks - especially useful for long running processes and those that create and destroy a lot of objects. To do this,
valgrind tracks the memory allocation/deallocations your application does and generates reports about places that might be losing
memory.

Install valgrind

Almost all Linux distributions include valgrind, but usually do not install it by default. Just select valgrind from your package
manager (shown in Kubuntu below) to install it.

8 & KPackageKit @& e ®
Add and Remove Software a
Software
Management valgrind Q@ @B Fndbyname v T Filters , Text search -
'@ Package ~ Action
software module to test Perl code through valgrind H\}
l.lpdates libtest-valgrind-perl
£ I ‘i-‘ A memory debugger and profiler
% '.. valgrind
Settings I
Details: Valgrind is a GPL'd tool to help you find memory-management
problems in your programs. When a program is run under Valgrind's
supervision, all reads and writes of memory are checked, and calls to
malloc/new/free/delete are intercepted.
Valgrind can debug more or less any dynamically-linked ELF x86/Linux,
amd64/Linux and ppc/Linux executables, without medification,
| I Help ||) Defaults ||) Reset | | « Apply |

If you prefer to use the console, all you need to do on a deb based Linux is

About 50 MB later, you will have valgrind installed

Install the (Nokia) Qt SDK or Qt Creator

If you do not already have it, you can install the Nokia Qt SDK &, but the procedure below will work with any install of Qt Creator.
The approach outlined in this article can be used for desktop, Maemo and Simulator targets.

Open project

Create or open an existing project. Here an example of simple application is created. Notice how this example intentionally leaks
a QLabel object every time the button is pressed.

http://developer.nokia.com/community/wiki/Using_valgrind_with_Qt_Creator (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/Using_valgrind_with_Qt_Creator
http://developer.nokia.com/community/wiki/Template:FeaturedArticle
http://valgrind.org/
http://developer.nokia.com/community/wiki/File:Valgrind2.png
http://www.developer.nokia.com/info/sw.nokia.com/id/e920da1a-5b18-42df-82c3-907413e525fb/Nokia_Qt_SDK.html

Page 2 of 6

B @ mainwindow.ui - leaker - Qt Creator Primeg_OT]_:Z._O%g:d3-09

File Edit Build Debug Tools Window Help

) Filter | Object Class =
= Spacers = - Maigzwindow . QMainWindo
0 . - centralWidget || Qwidget
BN beq HorzontalSpacer T
= E Vertical Spacer I pushButton =] QPus...th
= = Buttons
Push Button
[| [| [|
Design Tool Button L3
(® PRadio Button —Elite -
NN @ Check Box " " -
6 Command Link Button

List View] [v] |label : QLabel
S SR Tree View Filter Property value

e Button Box | 4] 1] L2
- Item Views (Model-Based) — Filter

E Table View Name Used Text 9° .
objectNa... label
P Column View _
- - Item Widgets (ltem-Based) enabled .(
List Widget + geometry [(110,120), 101 x ...
@-;;B Tree Widget +-sizePolicy | [Preferred, Preferre...
E Table Widget + mlmmum... O0x0
; +- maximum... | 16777215 x 16777...
= Containers .
+- sizelncre... 0x0
lj Group Box 4] | v * baseSize 0x0
Scroll Area '+| Action Editor | Signals & Slots Editor | palette Inherited o
I O~ Type to locate Build Issues Search Resultsnpplication OutputCompile Output-
i E] W mainwindow.cpp - leaker - Ot Creator & & e

File Edit Build Debug Tools Window Help

« »

- leaker #include "mainwindow.h"

mainwindow.cpp * | / MainWindow::... %/ Line: 9, Col: 61

Projects

i leaker.pro #ginclude "ui_mainwindow.h"
--£# Forms
|# mainwindow.ui MainWindow: : MainWindow(QWidget *parent)
+- 55 Headers OMainWindow(parent),
-5 Sources ui(new Ui::MainWindow)
c. main.cpp {
ui-=setupli(this);
9 connect (ui-=pushButton, SIGMAL(clicked()), sLOT(leak()));
}
vold MainWindow::leak ()
{
ui-»label = new QLabel();
}

Mainwindow: : ~MainWindow ()
{

Projects

(2]

Help

delete ui;
1

leaker
i
[
Debug

>

-

- COMMAND — Quit FakeVim
| A £- Type to locate Build Issues Search Results Application Qutput n Compile Output -

=,

Create run target

http://developer.nokia.com/community/wiki/Using_valgrind_with_Qt_Creator (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/File:Valgrind4.png
http://developer.nokia.com/community/wiki/File:Valgrind5.png

Page 3 of 6
In order to use valgrind, a special run target needs to be added to the project. Click the projects icon and then the 'rEf"&&2figH &P3-0°

the target you wish to debug. You will see something like

m mainwindow.cpp - leaker - Ot Creator & & s

File Edit Build Debug Tools Window Help

Qt QEEE | Editor Settings | Dependencies |

E Maemo Qt Simulator

& | Buid | Run suid [N LX)

Y b Run Settings

Run configuration: [Ieaker -] [Add -l Remove

Name: [leaker

Executable: ftmp/leaker-build-simulator/leaker

W Arguments: [

e Working directory: | tmpjleaker-build-simulator] [

Help Run in terminal

Run Environment

=
Using Build Environment Details

| EE £~ Type to locate Build Issues Search Results Application Qutput Compile Output

Now click 'add' and specify a new target that looks like the following
[El o/ mainwindow.ui - leaker - Gt Creator & & &

File Edit Build Debug Tools Window Help

leaker

ElGEsly | Editor Settings | Dependencies |

Maeme Qt Simulator

@ | Buid | Run (I rin | ©

b Run Settings

Run configuration: [valgrind -] [Add -l Remove
Name: [valgrind
Executable: [fusrfbinfvalgrind l Browse
Arguments: [-q —tool=memcheck —leak-check=full —leak-resolution=Ilow —suppressions=qtd47supp.txt ./leaker
Working Directory: | SBUILDDIR | [Browse

Run in Terminal

Run Environment

Using Build Environment Details

| Il ©- Type to locate Build Issues Search Results Application Output Compile Output

http://developer.nokia.com/community/wiki/Using_valgrind_with_Qt_Creator (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/File:Valgrind7.png
http://developer.nokia.com/community/wiki/File:Valgrind8.png

Page 4 of 6
The complex argument line in text form for copy-pasting: Printed on 2014-03-09

-q --tool=memcheck --leak-check=full --leak-resolution=low --suppressions=Qt47supp.txt
./[your-app-target-name]

...

As an initial default Qt4.7 suppression file (see below) for simulator targets you can use File:Qt47supp.txt. Of course, depending
on what modules or additional libraries use, you will want to extend it.

Running the application

You will see that now in your target window you have a new run configuration selectable

Fld L1ivLl

Project leaker
Maemo

Build: Debug %

Run: New Maemo Run C

Qt Simulator
Build: Debug *

Run: valgrind

| I ©- Type to locate 18| Build Issue

Make sure you're adding/selecting valgrind in the debug build, as it will not be able to find symbols and code lines in a release
build. Upon running the application, there will be a lot of output from valgrind, intertwined with the actual output from your
application. Notice that valgrind will print most of its finding when you exit the application. If you followed the article, you'll see a
large amount of valgrind output.

E] mainwindow.cpp - leaker - Ot Creator & & e

File Edit Build Debug Tools Window Help

Projects V. ® B X € & manwindow.cpp * | # MainWindow::... % Line: 21, Col: 1 X

- leaker #include "mainwindow.h"

v

i leaker.pro #ginclude "ui_mainwindow.h"
--£# Forms
|# mainwindow.ui Mainwindow: :MainWindow (QWidget *parent) :
- 55 Headers OMainWindow(parent),
h/ mainwindow.h ui(new Ui::MainWindow)
--£51 Sources { _ S
cs main.cpp ui-=setupli(this);
... @ mainwindow.cpp connect (ui-=pushButton, SIGNAL (clicked()), SLOT(leak())):
' T }
vold MainWindow::leak ()
{
ui-»label = new QLabel();
N : -
' 5
Projects MainWindow: : ~MainWindow () |
{ L |
- ComMAND -
leaker Application Output
El_"_, ; valgrind @
==6883== by 0x549A315: (WidgetBackingStore::sync() (in (]
Oelans /home fattila/NokiaQtSDK/Simulator/Qt/gcc/1ib/11bQtGui.s0.4.7.0)
> ==6883== by Gx52B1246: (WidgetPrivate::syncBackingStore() (in
/home fattila/NokiaQtSDK/Simulator/Qt/gcc/1ib/11bQtGui.s0.4.7.0)
==6883== by Gx52BCCS8: QWidget::event(QEvent*) (in
b\ /home fattila/NokiaQtSDK/Simulator/Qt/gcc/1ib/11bQtGui.s0.4.7.0)
L ==6883== by Gx570FD25: QMainWindow::event(QEvent*) (in
- /home fattila/NokiaQtSDK/Simulator/Qt/gcc/1ib/11bQtGui.s0.4.7.0)
od ==5883==

-
| N £- Type to locate Build IssuesSearch Results WIS sllsE I Ne i< (T W Compile Output

Interpreting the results

http://developer.nokia.com/community/wiki/Using_valgrind_with_Qt_Creator (C) Copyright Nokia 2014. All rights reserved.

http://developer.nokia.com/community/wiki/File:Qt47supp.txt
http://developer.nokia.com/community/wiki/File:Valgrind10.png
http://developer.nokia.com/community/wiki/File:Valgrind9.png

Page 5 of 6
You will soon realize that valgrind's output can easily become overwhelming. One of the keys of dealing with valgritititediisidpifys0o

using good suppression files &. Using these files avoids warnings that are false alarms or located in code outside of ours.
Generally, you should pay no attention to valgrind complaints about errors in glibc or Qt - itis a common mistake to start valgrind
without suppression files and then think that everything is leaking, but that is generally just the side-effect of lower level libraries
deallocating memory after valgrind. Thus, to be able to focus on actual leaks in our code, a suppression file needs to be
generated that will bring down the valgrind output to a manageable size containing only errors in the code at hand.

As an initial default Qt4.7 suppression file for simulator targets you can use File:Qt47supp.txt. Of course, depending on what
modules or additional libraries use, you will want to extend it.

Now, save the suppression file in the build directory and re-run the application. Now you can easily spot the memory leak report
with a precise source file and location where the action that caused the leak occurred.

[':J \s mainwindow.cpp - leaker - Ot Creator & & e

File Edit Build Debug Tools Window Help
Projects $ Y- ® H X 4 # manwindow.cpp 5| # MainWindow::M... $ | Line: 6, Col: 5 *

=i leaker #include "mainwindow.h" 1=
% leaker.pro #include "ui_mainwindow.h"
+ Forms
+- 55 Headers MainWindow: :MainWindow(QWidget *parent) :
--£5] Sources QMainWindow(parent),

c./ main.cpp 6 ui(new Ui::MainWindow)

L. B ‘mainwindow.cpp {

ui->setupli(this);
connect (ul-=pushButton, SIGMAL{clicked()), SLOT(leak()));
}

vold MainWindow::leak ()
{

ui-»label = new QLabel();
1

Projects MainWindow: : ~MainWindow ()
i -
@ Anlmdn i il
Help -- COMMAND -- Quit FakeVim

leaker

Application Output

valgrind €

==8588== 1,392 (1,312 direct, 80 indirect) bytes in 2 blocks are definitely (]
lost in loss record 41 of 50

==8588== at Ox4C28CCL: operator new(unsigned long) (vg_replace malloc.c:261)
==8588== by Gx56FEBOD: QLabel::QLabel(QWidget*, QFlags<Qt::WindowType=) (in
shome fattila/NokiaQtsDk/simulator/Qt/gec/1ib/1ibQtGui. s0.4.7.0)

==8588=-= by Ox40ZFDD: Mainwindow::leak() (mainwindow.cpp:14)

==8588== by Ox4038A1: MainWindow::qt_metacall(QMetaObject::Call, int,
void**) (moc_mainwindow.cpp:72)

==8588== by OxB4716F9: QMetaObject::metacall(QObject*, QMetaObject::Call,
int, void**) (in -

Jshome fattila/MokiaQtsSDk/Simulator/Qt/gce/1ib/1ibQtCore.s0.4.7.0) hd
| HEl ©- Type to locate Build IssueSSearch iz | 3| Application Qutput| |4

Qt making your life easier

An important note is that in many cases you can prevent memory leaks just by using Qt's smart pointer classes i,
QScopedPointer& and QSharedPointere? being of particular interest for most common use-cases.

The QObject# class also has mechanisms that help avoid dangling pointers and memory leaks. When a QObject is deleted, it
emits a destroyed() signal and also automatically calls the destructor's of its child objects.

Summary

The above should start you down path of finding leaks in your Qt applications. Should you require more detailed reports or want to
find out more about what valgrind can do for you, check the Valgrind manual &.

http://developer.nokia.com/community/wiki/Using_valgrind_with_Qt_Creator (C) Copyright Nokia 2014. All rights reserved.

http://valgrind.org/docs/manual/mc-manual.html#mc-manual.suppfiles
http://developer.nokia.com/community/wiki/File:Qt47supp.txt
http://developer.nokia.com/community/wiki/File:Valgrind11.png
http://labs.qt.nokia.com/2009/08/25/count-with-me-how-many-smart-pointer-classes-does-qt-have/
http://doc.trolltech.com/4.7/qscopedpointer.html
http://doc.trolltech.com/4.7/qsharedpointer.html
http://doc.trolltech.com/4.7/qobject.html#details
http://valgrind.org/docs/manual/mc-manual.html

Page 6 of 6
Printed on 2014-03-09

http://developer.nokia.com/community/wiki/Using_valgrind_with_Qt_Creator (C) Copyright Nokia 2014. All rights reserved.

	Using valgrind with Qt Creator
	Install valgrind
	Install the (Nokia) Qt SDK or Qt Creator
	Open project
	Create run target
	Running the application
	Interpreting the results
	Qt making your life easier
	Summary

